

z/VM IBM

XEDIT User's Guide
version 5 release 2

 SC24-6132-01

z/VM IBM

XEDIT User's Guide
version 5 release 2

 SC24-6132-01

 Note:

Before using this information and the product it supports, read the information under “Notices” on page 139.

Acknowledgement

IBM gratefully acknowledges the permission to reprint excerpts from the following:

The People's Almanac, by David Wallechinsky and Irving Wallace. Copyright 1975 by David Wallace and Irving Wallace.
Reprinted by permission of Doubleday & Company, Inc.

I Wouldn't Have Missed It, by Ogden Nash, reprinted by permission of Curtis Brown, Ltd.

Copyright 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1942, 1943, 1947, 1948, 1949, 1950, 1951, 1952,
1953, 1954, 1955, 1956, 1957, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971 by Ogden Nash.
Copyright 1933, 1934, 1935, 1936, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1947, 1948 by the Curtis Publishing Company.
Copyright 1952 by Cowles Magazines, Inc. Copyright 1969, 1970, 1971, 1972, 1975 by Isabel Eberstadt and Linell Smith.

Copyrights Renewed 1957, 1958, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1968, 1970 by Ogden Nash. Renewed 1963,
1964 by the Curtis Publishing Company. Renewed by the Saturday Evening Post Company.

Second Edition (December 2005)

This edition applies to version 5, release 2, modification 0 of IBM z/VM (product number 5741-A05) and to all subsequent releases
and modifications until otherwise indicated in new editions.

This edition replaces SC24-6132-00.

 Copyright International Business Machines Corporation 1990, 2005. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . vii
Who Should Read This Book . vii
What You Should Know before Reading This Book vii
How To Use This Book . vii
How to Read Syntax Diagrams . viii

Message and Response Notation . x
Where to Find More Information . x
How to Send Your Comments to IBM . x

Summary of Changes . xiii
SC24-6132-01, z/VM Version 5 Release 2 . xiii
SC24-6132-00, z/VM Version 5 Release 1 . xiii

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 1
Editing a File . 1

XEDIT Command . 1
Screen Layout . 2

XEDIT and Full-Screen CMS . 4
Entering Data . 4

INPUT Subcommand . 5
POWERINP Subcommand . 7

Using Program Function (PF) Keys . 9
Splitting and Joining Lines . 10
Scrolling Backward and Forward . 12
Redisplaying a Subcommand . 12
Reexecuting a Subcommand . 12
Inserting Words Using the Insert Mode Key and a NULL Key (PA2) 12

Using Prefix Subcommands . 13
Adding Lines Using the A Prefix Subcommand 13
Deleting Lines Using the D Prefix Subcommand 13
Adding Indented Lines Using the SI Prefix Subcommand 16
Duplicating Lines Using the " Prefix Subcommand 18
Moving Lines Using the M, MM, F, and P Prefix Subcommands 19
Copying Lines Using the C, CC, F, and P Prefix Subcommands 19
Setting the Current Line (/) . 20
Canceling Prefix Subcommands . 21

Moving through a File . 21
BACKWARD and FORWARD Subcommands 21
TOP and BOTTOM Subcommands . 21
DOWN and UP Subcommands . 22

Making Changes in a File . 23
CLOCATE Subcommand . 24
CHANGE Subcommand . 25
Making a Selective Change . 25
Making a Global Change . 27
CINSERT Subcommand . 28
CFIRST Subcommand . 30

Setting Tabs . 31
Ending an Editing Session . 32

FILE Subcommand . 32

 Copyright IBM Corp. 1990, 2005 iii

QUIT Subcommand . 32
SET AUTOSAVE Subcommand . 32

Inserting Data from Another File . 33
Inserting a Whole File . 33
Inserting Part of Another File . 35

Getting Help . 38
Learning More about the Editor . 39
Summary of XEDIT Subset . 40

Chapter 2. Practice Exercises . 43
Exercise 1. Creating a File . 43
Exercise 2. Using Power Typing . 44
Exercise 3. Using Prefix Subcommands . 46
Exercise 4. Making Changes . 47
Exercise 5. Getting It All Together . 48

Chapter 3. Using the Editor on a Typewriter Terminal 51
Editing a File . 51

XEDIT Command . 51
Entering Data . 52

INPUT Subcommand . 52
Column Pointer . 53
QUERY LRECL . 53

Moving through a File . 53
Line Pointer . 53
TYPE Subcommand . 53
UP and DOWN Subcommands . 54
TOP and BOTTOM Subcommands . 54

Making Changes in a File . 54
CLOCATE Subcommand . 55
CFIRST Subcommand . 55
CINSERT Subcommand . 55
CDELETE Subcommand . 56
CAPPEND Subcommand . 56
CHANGE Subcommand . 57

Inserting and Deleting Lines . 58
Moving and Copying Lines . 60

MOVE Subcommand . 61
COPY Subcommand . 62
LPREFIX Subcommand . 62

Ending an Editing Session . 62
FILE Subcommand . 62
QUIT Subcommand . 62
SET AUTOSAVE Subcommand . 63

Inserting Data from Another File . 63
Inserting a Whole File . 64
Inserting Part of Another File . 64

Using Special Characters . 66
SET IMAGE Subcommand . 66

Disconnect Mode Restrictions . 68
Summary of XEDIT Subset . 69

Chapter 4. Using Targets . 71
What Is a Target? . 71

iv z/VM: XEDIT User's Guide

Using a Target to Change Which Line Is Current 72
A Target as the Operand of a LOCATE Subcommand 73
A Target Preceding a Subcommand . 74

Using a Target as a Subcommand Operand . 74
Types of Targets . 76

A Target as an Absolute Line Number . 76
A Target as a Relative Displacement from the Current Line 77
A Target as a Line Name . 79
A Target as a Simple String Expression . 81
A Target as a Complex String Expression . 85

Using Column-Targets . 89

Chapter 5. Editing Multiple Files . 93
The XEDIT Subcommand . 93
Creating a Ring of Files in Storage . 93
Editing the Files in the Ring . 94
Ending an Editing Session . 94
Multiple Logical Screens . 95

SET SCREEN Subcommand . 96
Multiple Views of the Same File . 96
Making Changes from Multiple Views of the Same File 96
Multiple Views of Different Files . 97
Order of Processing . 98
Cursor Considerations . 99

Chapter 6. Tailoring the Screen . 101
Tailoring using SET subcommand options . 101

Chapter 7. The Macrolanguage . 111
What Is an XEDIT Macro? . 111
Creating a Macro File . 111
Using XEDIT Subcommands in a Macro . 112

Communicating between the Editor and the Interpreter 112
Saving and Restoring Editing Variables . 116
Entering CMS and CP Commands . 116
Avoiding Name Conflicts . 116

Walking through an XEDIT Macro . 117
A Profile Macro for Editing . 121

Executing a Profile Macro . 121
Writing a Profile Macro . 122
An Example of a Profile Macro . 123

Writing Prefix Macros . 124
Creating a Sample Prefix Macro . 124
What Information Is Passed to the Macro? . 124

Current Line Positioning . 125
Creating a Second Prefix Macro . 125
Examining the Source String . 125
Using the Information That Is Passed . 126
Handling Blocks . 126

Assigning a Synonym for a Prefix Macro . 127
Using the Pending List . 128

Examining the Argument String . 129
Positioning the Cursor . 130
Decoding the Prefix Area . 130

 Contents v

Using the XEDIT Subcommand . 130
Additional Examples . 131
The L Prefix Macro . 132

Appendix A. Summary of XEDIT Subcommands and Macros 133

Notices . 139
Trademarks . 140

Glossary . 141

Bibliography . 143
Where to Get z/VM Books . 143
z/VM Base Library . 143

Overview . 143
Installation, Migration, and Service . 143
Planning and Administration . 143
Customization and Tuning . 143
Operation . 143
Application Programming . 143
End Use . 144
System Diagnosis . 144

Books for z/VM Optional Features . 144
Data Facility Storage Management Subsystem for VM 144
Directory Maintenance Facility . 145
Performance Toolkit for VM . 145
Resource Access Control Facility . 145

Index . 147

vi z/VM: XEDIT User's Guide

About This Book

This book is designed to give you a working knowledge of the IBM z/VM editor,
XEDIT. XEDIT provides a wide range of functions for text processing and program
development. Both a full-screen and a line-mode editor, it can be used on display
and typewriter terminals.

Some highlights of the editor discussed in this book are:

� Extended string search facilities for improved text processing
� Automatic wrapping of lines that are longer than a screen line
� The ability to directly enter selected subcommands on a displayed line
� The ability to tailor the full-screen layout
� The ability to divide the screen to display multiple views of the same or of

different files
� A variety of macros for improved text processing, such as macros to join and

split lines
� A HELP Facility that provides an online full-screen display of any XEDIT

subcommand or macro (or any command in the z/VM HELP Facility) during an
editing session.

� XEDIT support of Double-Byte Character Set (DBCS) strings (KANJI, for
example).

Who Should Read This Book
This book was written for the person who has limited data processing experience.

What You Should Know before Reading This Book
Before reading this book, you should be familiar with the terminal keyboard and you
should have some knowledge of CMS. Corequisite publications are the z/VM:
XEDIT Commands and Macros Reference and the z/VM: CMS Primer.

How To Use This Book
This book relies on before-and-after examples that illustrate the text. You can also
practice these examples.

The first three chapters are intended for data processing novices.

� Chapter 1: An XEDIT Subset: Full-Screen Text Processing is written for the
inexperienced user who uses a display terminal in full-screen mode. It defines
a subset of XEDIT subcommands that perform commonly-used editing
functions.

� Chapter 2: Practice Exercises gives you practice in using the subcommands
presented in “How to Read Syntax Diagrams” on page viii. It is an interactive
text — that is, it guides you through an editing session, step by step.

� Chapter 3: Using the Editor on a Typewriter Terminal is similar to “How to
Read Syntax Diagrams” on page viii but is written for the user who has a
typewriter terminal.

 Copyright IBM Corp. 1990, 2005 vii

The last three chapters are intended both for new users who have mastered the
fundamentals and for data processing professionals. These chapters introduce
more sophisticated editing functions:

� Chapter 4: Using Targets explains how to use the editor’s extended string
search facilities. Targets move the line pointer and define the range of many
XEDIT subcommands.

� Chapter 5: Editing Multiple Files explains how to edit multiple files and how to
divide the screen into multiple logical screens for multiple views of the same or
of different files.

� Chapter 6: Tailoring the Screen explains how you can alter the screen layout
to suit yourself.

� Chapter 7: The Macrolanguage explains how to write XEDIT macros and also
explains how to write a profile macro.

The Appendix is a summary of the functions of the XEDIT subcommands and
macros.

How to Read Syntax Diagrams
This book uses diagrams to show the syntax of external interfaces and statements.
Also, this book uses a special notation to show variable, optional, or alternative
content in examples of messages and responses.

To read a syntax diagram, follow the path of the line. Read from left to right and
top to bottom.

� The ��─── symbol indicates the beginning of the syntax diagram.

� The ───� symbol, at the end of a line, indicates that the syntax diagram is
continued on the next line.

� The �─── symbol, at the beginning of a line, indicates that the syntax diagram is
continued from the previous line.

� The ───�� symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are
optional, and items above the line are defaults. See the following examples.

Syntax Diagram Convention Example

Keywords and Constants:

A keyword or constant appears in uppercase letters. In this example,
you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or constant in uppercase
letters, lowercase letters, or any combination. However, some
applications may have additional conventions for using all-uppercase or
all-lowercase.

��──KEYWORD───────────────────────────────��

Abbreviations:

Uppercase letters denote the shortest acceptable abbreviation of an
item, and lowercase letters denote the part that can be omitted. If an
item appears entirely in uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or KEYWORD.

��──KEYWOrd───────────────────────────────��

viii z/VM: XEDIT User's Guide

Syntax Diagram Convention Example

Symbols:

You must specify these symbols exactly as they appear in the syntax
diagram.

* Asterisk
: Colon
, Comma
= Equal Sign
- Hyphen
() Parentheses
. Period

Variables:

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable you must specify
following KEYWORD.

��──KEYWOrd──var_name─────────────────────��

Repetitions:
An arrow returning to the left means that the item can be repeated.

A character within the arrow means that you must separate each
repetition of the item with that character.

A number (1) by the arrow references a syntax note at the bottom of
the diagram. The syntax note tells you how many times the item can
be repeated.

Syntax notes may also be used to explain other special aspects of the
syntax.

 ┌ ┐──────────
��─ ───

�
┴─repeat─ ───────────────────────────��

 ┌ ┐─,──────
��─ ───

�
┴─repeat─ ───────────────────────────��

 ┌ ┐─────────────
��─ ───

�
┴─repeat────(1) ────────────────────────��

Note:
1 Specify repeat up to 5 times.

Required Item or Choice:

When an item is on the line, it is required. In this example, you must
specify A.

When two or more items are in a stack and one of them is on the line,
you must specify one item. In this example, you must choose A, B, or
C.

��──A─────────────────────────────────────��

��─ ──┬ ┬─A─ ────────────────────────────────��
 ├ ┤─B─
 └ ┘─C─

Optional Item or Choice:

When an item is below the line, the item is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of them are
optional. In this example, you can choose A, B, C, or nothing at all.

��─ ──┬ ┬─── ────────────────────────────────��
 └ ┘─A─

��─ ──┬ ┬─── ────────────────────────────────��
 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

Defaults:

When an item is above the line, it is the default. The system will use
the default unless you override it. You can override the default by
specifying an option from the stack below the line.

In this example, A is the default. You can override A by choosing B or
C.

 ┌ ┐─A─
��─ ──┼ ┼─── ────────────────────────────────��
 ├ ┤─B─
 └ ┘─C─

Repeatable Choice:

A stack of items followed by an arrow returning to the left means that
you can select more than one item or, in some cases, repeat a single
item.

In this example, you can choose any combination of A, B, or C.

 ┌ ┐───────
��─ ───

�
┴┬ ┬─A─ ──────────────────────────────��

 ├ ┤─B─
 └ ┘─C─

 About This Book ix

Syntax Diagram Convention Example

Syntax Fragment:

Some diagrams, because of their length, must fragment the syntax.
The fragment name appears between vertical bars in the diagram. The
expanded fragment appears in the diagram after a heading with the
same fragment name.

In this example, the fragment is named “A Fragment.”

��──┤ A Fragment ├────────────────────────��

A Fragment:
 ┌ ┐─A─
├─ ──┼ ┼─── ──────────────────────────────────┤
 ├ ┤─B─
 └ ┘─C─

Message and Response Notation
This book may include examples of messages or responses. Although most
messages and responses are shown exactly as they would appear, some content
may depend on the specific situation. The following notation is used to show
variable, optional, or alternative content:

xxx Highlighted text (usually italics) indicates a variable that represents the
data that will be displayed.

[] Brackets enclose optional items that may be displayed.

{ } Braces enclose alternative items, one of which will be displayed.

| The vertical bar separates items within braces or brackets.

... The ellipsis indicates that the preceding item may be repeated. A vertical
ellipsis indicates that the preceding line, or a variation of that line, may be
repeated.

Where to Find More Information
For further information, see the books listed under “Bibliography” on page 143.

How to Send Your Comments to IBM
IBM welcomes your comments. You can use any of the following methods:

� Complete and mail the Readers' Comments form (if one is provided at the back
of this book) or send your comments to the following address:

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, New York 12601-5400
U.S.A.

� Send your comments by FAX:

– United States and Canada: 1-845-432-9405

– Other Countries: +1 845 432 9405

� Send your comments by electronic mail to one of the following addresses:

 – Internet: mhvrcfs@us.ibm.com

– IBMLink (US customers only): IBMUSM10(MHVRCFS)

Be sure to include the following in your comment or note:

x z/VM: XEDIT User's Guide

� Title and complete publication number of the book

� Page number, section title, or topic you are commenting on

If you would like a reply, be sure to also include your name, postal or email
address, telephone number, or FAX number.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

 About This Book xi

xii z/VM: XEDIT User's Guide

Summary of Changes

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change (in that edition only). Some product changes identified in this
summary may be provided through z/VM service by program temporary fixes
(PTFs) for authorized program analysis reports (APARs).

SC24-6132-01, z/VM Version 5 Release 2
This edition supports the general availability of z/VM V5.2.

SC24-6132-00, z/VM Version 5 Release 1
This edition supports the general availability of z/VM V5.1.

 Copyright IBM Corp. 1990, 2005 xiii

xiv z/VM: XEDIT User's Guide

 Full-Screen Text Processing

Chapter 1. An XEDIT Subset: Full-Screen Text Processing

This chapter is primarily written for the person who has limited data processing
experience; however, some CMS experience is assumed. For example, you must
know how to log on and enter the CMS environment. You should also be familiar
with a CMS file.

This chapter provides a working knowledge of the editor. The subcommands
presented here are a subset of XEDIT subcommands selected for text processing
on a display terminal; with them you can create a file, enter data, manipulate the
screen, change a file, and transfer data between files. (If you have a typewriter
terminal, see Chapter 3, “Using the Editor on a Typewriter Terminal.”) The editor
has many additional capabilities, which are described later in this book and in z/VM:
XEDIT Commands and Macros Reference.

Editing a File
Editing is changing, adding, or deleting data in a CMS file. You make these
changes interactively: you instruct the editor to make a change, the editor makes
it, and then you request another change.

You also use XEDIT to create a file.

 XEDIT Command
After you log on and enter the CMS environment, you can enter the edit
environment and begin creating a file. Invoke the editor with the CMS command
XEDIT. Its format is:

��──Xedit──filename──filetype──��

You can also create a different type of file called a byte file system (BFS) file by
entering:

��──Xedit──pathname──(NAMetype──BFS──��

In Figure 1 on page 2, the following command invoked the editor:

XEDIT inventor script

Before entering data in a file, look at the screen layout illustrated in Figure 1 on
page 2.

Note: If your screen layout differs from Figure 1 on page 2 or if some of the
commands or PF keys work differently from the way this book says they do,
a PROFILE XEDIT macro may be tailoring your editing session. To keep
the PROFILE XEDIT macro from executing, add the NOPROFILE option:

XEDIT filename filetype (NOPROFILE
 or

XEDIT pathname (NAMETYPE BFS NOPROFILE

 Copyright IBM Corp. 1990, 2005 1

 Full-Screen Text Processing

See “A Profile Macro for Editing” on page 121 for more information on the
PROFILE XEDIT macro.

If these differences continue while using NOPROFILE, be sure this book
was written for your system’s release level. See the front cover of this book
for its release level and use QUERY CMSREL (see z/VM: CMS Commands
and Utilities Reference) to find the release level of your system. If they are
different, use the guide that matches the release level of your system.

 Screen Layout

� �
 INVENTOR SCRIPT A1 V 132 Trunc=132 Size=� Line=� Col=1 Alt=� �1�
Creating new file: �2�

 �3�

 �4�
===== � � � Top of File � � � �5� �6�
 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== � � � End of File � � �

 �3�

====> bottom �7�
�8� X E D I T 1 File

� �

Figure 1. Screen Layout

�1� File Identification Line

The first line on the screen identifies the file you are editing. The following
information is displayed:

file name, file type, file mode
or BFS path name

If you do not specify a file mode, the editor assigns a file mode of A1.
The file mode identifies an accessed minidisk or SFS (Shared File
System) directory where the file resides.

record format and record length
The record format and record length (V 132) mean that, in this file, the
length of a line can vary and the file can hold lines up to 132
characters long. Therefore, a file line can be longer than a screen line.

truncation column (Trunc=)
Notice the truncation column is the same as the record length (132).
Because a file line can be only 132 characters long, any data you
enter beyond 132 characters (in total) can be truncated.

current number of lines in the file (Size=)
(Because data has not yet been entered in the file, the number of lines
is zero.)

2 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

file line number of the current line (Line=)
(See number 5, following.)

position of the column pointer (Col=)
(See number 6, following.)

alteration count (Alt=)

The alteration count is the number of alterations that have been made to
the file since the last AUTOSAVE (which is explained later in this chapter).

�2� Message Line

The editor communicates with you by displaying messages on the second
and third lines of the screen. These messages tell you if you have made
an error, or they provide information. In Figure 1 on page 2, the message
line shows you are creating a new file.

�3� File Area

This part of the screen is available to display the file.

You can make changes to the file by moving the cursor under any line and
typing over the characters, or by using special keys to insert or delete
characters. You can make as many changes as you want on the
displayed lines before pressing Enter. When you press Enter, the changes
are made to the copy of the file kept in virtual storage. At the end of the
editing session, a FILE subcommand permanently records those changes
on the copy of the file that resides on disk or directory.

Because a file can be too long to fit on one screen, various subcommands
scroll the screen so you can move forward and backward in a file.
Scrolling the screen is like turning the pages of a book.

�4� Prefix Area

The prefix area is the five left-most columns on the screen, and it displays
five equal signs (=====). Each line in the file has a prefix area.

You can perform various editing tasks such as deleting a line by entering
short commands, called prefix subcommands, in the prefix area of a line.

�5� The Current Line

The current line is the file line in the middle of the screen (above the
scale). It is highlighted, appearing brighter than the other file lines.

In Figure 1 on page 2, the current line is the Top of File line; the file
contains no data yet.

The current line is an important concept, because most subcommands
perform their functions starting with the current line. Naturally, the line that
is current changes during an editing session as you scroll the screen,
move up and down, and so forth. When the current line changes, the line
pointer (not visible on the screen) has moved. Many XEDIT subcommands
perform their functions starting with the current line and move the line
pointer when they are finished.

�6� Scale

The scale appears under the current line to help you edit. It is like the
margin scale on a typewriter.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 3

 Full-Screen Text Processing

The vertical bar (|) in column one on the scale is the column pointer.
Various subcommands perform their functions within a line starting at the
column pointer, which you can move to different positions on the scale by
using XEDIT subcommands that are discussed later. The current column
is the column under which the column pointer is positioned.

�7� Command Line

The large arrow (====>) at the bottom of the screen points to the command
input area. One way you communicate with the editor is to enter XEDIT
subcommands on this line. You can type subcommands in uppercase or
lowercase or a combination of both, and many can be abbreviated. For
example, BOTTOM, Bottom, and b are all valid ways to type the BOTTOM
subcommand.

After typing a subcommand on the command line, press Enter to execute
the subcommand. Figure 1 on page 2 shows the subcommand BOTTOM
typed on the command line. (To move the cursor from any place on the
screen to the command line, just press Enter or PF12.)

�8� Status Area

The lower right corner displays the current status of your editing session,
for example, edit mode or input mode, and the number of files you are
editing. The status area in Figure 1 on page 2 shows one file is being
edited.

XEDIT and Full-Screen CMS
If you invoke XEDIT from full-screen CMS, the way you see messages other users
send you is not the same as when full-screen CMS is off. While full-screen CMS is
off, the message appears on a cleared screen with a HOLDING status at the bottom.
You can press Clear to get the XEDIT screen back.

If full-screen CMS is on, any message you receive appears in the message
window, which automatically pops up on top of your XEDIT screen. To scroll
forward in the message window, type an f (forward) in one of the border corners
(indicated by + signs) and press Enter. Continue to use the f border command until
you have seen all the information in the message window. When there is no more
information to display, the window is automatically removed from your screen.

 Entering Data
After you enter the XEDIT command, you are in edit mode. You must be in edit
mode to enter XEDIT subcommands.

You can enter data into the file using input mode or power typing mode, which are
discussed in the following sections.

4 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

 INPUT Subcommand
To enter input mode, enter the following subcommand on the command line:

====> input

You can then type in your data in the input zone, which is the bottom half of the
screen (between the scale and the command line).

Figure 2 through Figure 4 is the same file, INVENTOR SCRIPT, that Figure 1 on
page 2 shows. However, the INPUT subcommand has been entered and the lines
of data have been typed on the screen. Notice how the screen changes in input
mode: the prefix areas (=====) disappear; the message line and status area tell you
that you are in input mode; the command line contains the phrase Input Zone,
which marks the end of the input zone and reminds you that you cannot enter
subcommands in input mode.

� �
 INVENTOR SCRIPT A1 V 132 Trunc=132 Size=9 Line=� Col=1 Alt=�

Input mode:

� � � Top of File � � �

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....

THE ELECTRONIC COMPUTER (1946)

ONE OF THE WORLD'S FIRST ELECTRONIC COMPUTERS WAS CALLED ENIAC,

ELECTRONIC NUMERIC INTEGRATOR AND COMPUTER.

IT WAS BUILT BY A GROUP OF RESEARCHERS LED BY AMERICAN PHYSICIST

JOHN MAUCHLY AT THE UNIVERSITY OF PENNSYLVANIA.

UNLIKE EARLIER COMPUTERS, THIS ONE RAN ON RADIO TUBES - 18,��� OF THEM

IN TOTAL.

IT FILLED A ROOM 3� FEET BY 5� FEET AND COST $4��,���.

====> � � � Input Zone � � �

Input-mode 1 File

� �

Figure 2. Input Mode — Typing the Data

In Figure 2, the entire input zone has been filled. To stay in input mode and type
more data, press Enter once. The lines you typed move to the top half of the
screen, with the last line you typed becoming the new current line. The input zone
is available for you to type more data, as shown in Figure 3 on page 6.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 5

 Full-Screen Text Processing

� �
 INVENTOR SCRIPT A1 V 132 Trunc=132 Size=18 Line=9 Col=1 Alt=9

� � � Top of File � � �

THE ELECTRONIC COMPUTER (1946)

ONE OF THE WORLD'S FIRST ELECTRONIC COMPUTERS WAS CALLED ENIAC,

ELECTRONIC NUMERIC INTEGRATOR AND COMPUTER.

IT WAS BUILT BY A GROUP OF RESEARCHERS LED BY AMERICAN PHYSICIST

JOHN MAUCHLY AT THE UNIVERSITY OF PENNSYLVANIA.

UNLIKE EARLIER COMPUTERS, THIS ONE RAN ON RADIO TUBES - 18,��� OF THEM

IN TOTAL.

IT FILLED A ROOM 3� FEET BY 5� FEET AND COST $4��,���.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....

USING TEN-DIGIT NUMBERS, IT COULD DO 5,��� ADDITIONS A SECOND.

====> � � � Input Zone � � �

Input-mode 1 File

� �

Figure 3. Input Mode — Continue Typing

If you have no more data to type, pressing Enter again takes you out of input mode
and back into edit mode.

Figure 4 shows how the data looks in the file, after you press Enter twice. The
display is restored to the edit mode screen layout described in Figure 1 on page 2,
and the file contains the data.

� �
 INVENTOR SCRIPT A1 V 132 Trunc=132 Size=1� Line=1� Col=1 Alt=1�

XEDIT:

===== THE ELECTRONIC COMPUTER (1946)

===== .sp

===== ONE OF THE WORLD'S FIRST ELECTRONIC COMPUTERS WAS CALLED ENIAC,

===== ELECTRONIC NUMERIC INTEGRATOR AND COMPUTER.

===== IT WAS BUILT BY A GROUP OF RESEARCHERS LED BY AMERICAN PHYSICIST

===== JOHN MAUCHLY AT THE UNIVERSITY OF PENNSYLVANIA.

===== UNLIKE EARLIER COMPUTERS, THIS ONE RAN ON RADIO TUBES - 18,��� OF THEM

===== IN TOTAL.

===== IT FILLED A ROOM 3� FEET BY 5� FEET AND COST $4��,���.

===== USING TEN-DIGIT NUMBERS, IT COULD DO 5,��� ADDITIONS A SECOND.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 4. Input Mode — Data Entered in the File

During an editing session, you can enter input mode at any time to insert new lines
of data in the file. As you have seen, after the INPUT subcommand is entered, the
editor makes room for you to type new lines of data after the current line. In this
example, because the file was new and the INPUT subcommand was the first

6 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

subcommand entered, the Top of File line was the current line. Later, you will see
how to make any line current, so you can use input mode to insert lines between
any two existing lines in the file.

 POWERINP Subcommand
The easiest way to enter a large amount of text, like one long paragraph, is to use
power typing. To use power typing, enter the following subcommand:

====> power

The advantage of power typing is you can enter data as if the screen were one
long line. You do not have to be concerned with line length or word length; you
can start typing a word on one line of the screen and finish it on the next. In fact, if
you are a skilled typist, you do not even have to look at the screen. When you
reach the end of a line, the editor automatically wraps around to the beginning of
the next line. You can type continuously until the screen is filled.

If you fill up a screen and want to continue typing in power typing mode, press
Enter once. The last line you typed is displayed at the top of the screen; the rest of
the screen is blank, and you can continue typing.

When you are done typing, press Enter twice to exit from power typing and reenter
edit mode. The editor automatically divides the data into appropriate screen lines
and reconstructs any split words.

During an editing session, you can use power typing at any time by entering the
POWERINP subcommand. The data you enter with power typing is inserted after
the current line, as it is when you use the INPUT subcommand.

Causing a Break in the Data
To cause a break in the data you have entered in power typing mode, type a
line-end character just before the place in the text where you want the break. The
default line-end character is a pound sign (#). Use the pound sign to signify the
start of a new paragraph or to set off a SCRIPT/VS control word.

For example, suppose you type the following data in power typing mode:

.sp#A pound sign causes the data to start on a new line.#.sp

The data is entered in the file as:

===== .sp

===== A pound sign causes the data to start on a new line.

===== .sp

 Inserting Characters
If you want to insert characters or spaces in a line while you are in power typing
mode, you can use the insert mode key. When characters are inserted, the entire
stream of data shifts to the right; it is like inserting a box car in a train. Press
Reset when you are done inserting characters.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 7

 Full-Screen Text Processing

Example of Power Typing
Figure 5 shows the same file, INVENTOR SCRIPT, but the data was typed in
power typing mode, after entering the POWERINP subcommand. The screen
changes in several ways in power typing mode: the prefix and status areas
disappear, the line that was current when the POWERINP subcommand was
entered moves to the top of the screen, and the rest of the screen is available for
typing data. Notice how a word can start at the end of a line and finish on the next.
The entire screen can be filled with data, but it does not have to be.

� �
INVENTOR SCRIPT A1 � � � P o w e r T y p i n g � � � Alt=�

� � � Top of File � � �

ONE OF THE WORLD'S FIRST ELECTRONIC COMPUTERS WAS CALLED ENIAC, ELECTRONIC NUMER

IC INTEGRATOR AND COMPUTER. IT WAS BUILT BY A GROUP OF RESEARCHERS LED BY AMERI

CAN PHYSICIST JOHN MAUCHLY AT THE UNIVERSITY OF PENNSYLVANIA. UNLIKE EARLIER CO

MPUTERS, IT RAN ON RADIO TUBES - 18,��� OF THEM IN TOTAL. IT FILLED A ROOM 3� F

EET BY 5� FEET AND COST $4��,���. USING TEN-DIGIT NUMBERS, IT COULD DO 5,��� AD

DITIONS A SECOND.#.sp#A GERMAN PHYSICIST, ROENTGEN, DISCOVERED THE XRAY BY ACCID

ENT. HE WAS DOING EXPERIMENTS WITH A CROOKES TUBE, WHICH PRODUCED STREAMS OF EL

ECTRONS CALLED CATHODE RAYS. ONE DAY HE LEFT AN ACTIVATED CROOKES TUBE ON A BOO

K BEFORE LEAVING THE LABORATORY. HE DID NOT REALIZE THAT A KEY AND SOME PHOTOGR

APHIC FILM WERE SANDWICHED IN THE BOOK. LATER, WHEN HE DEVELOPED THE FILM, HE S

AW THE IMAGE OF THE KEY. THUS WAS THE FIRST XRAY ACCIDENTALLY TAKEN.

� �

Figure 5. Power Typing

Notice the pound signs (#) in the eighth line (from the top of the screen). When
you enter a pound sign, it causes the data that follows it to begin on a new line.
The pound sign itself does not appear in the file.

To leave power typing mode and return to the XEDIT environment, press Enter
twice. The screen layout is restored, and the words and lines are reconstructed.
The lines you typed are entered and the pound sign line separator is interpreted.
Any data preceded by a pound sign begins on a new line. The last line entered
becomes the current line. To display the entire file on your screen, change the
current line to a point above the End of File line by placing a slash (/) in the prefix
area and pressing Enter. Figure 6 on page 9 illustrates the same file, INVENTOR
SCRIPT, after returning to the XEDIT environment. The current line was changed
by placing a slash in the prefix area of the line beginning, “DOING EXPERIMENTS
WITH . . .” and pressing Enter.

8 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

� �
 INVENTOR SCRIPT A1 V 132 Trunc=132 Size=14 Line=9 Col=1 Alt=15

===== ONE OF THE WORLD'S FIRST ELECTRONIC COMPUTERS WAS CALLED ENIAC, ELECTRONIC

===== NUMERIC INTEGRATOR AND COMPUTER. IT WAS BUILT BY A GROUP OF

===== RESEARCHERS LED BY AMERICAN PHYSICIST JOHN MAUCHLY AT THE UNIVERSITY OF

===== PENNSYLVANIA. UNLIKE EARLIER COMPUTERS, IT RAN ON RADIO TUBES - 18,���

===== OF THEM IN TOTAL. IT FILLED A ROOM 3� FEET BY 5� FEET AND COST

===== $4��,���. USING TEN-DIGIT NUMBERS, IT COULD DO 5,��� ADDITIONS A

===== SECOND.

===== .SP

===== A GERMAN PHYSICIST, ROENTGEN, DISCOVERED THE XRAY BY ACCIDENT. HE WAS

===== DOING EXPERIMENTS WITH A CROOKES TUBE, WHICH PRODUCED STREAMS OF

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== ELECTRONS CALLED CATHODE RAYS. ONE DAY HE LEFT AN ACTIVATED CROOKES

===== TUBE ON A BOOK BEFORE LEAVING THE LABORATORY. HE DID NOT REALIZE THAT

===== A KEY AND SOME PHOTOGRAPHIC FILM WERE SANDWICHED IN THE BOOK. LATER,

===== WHEN HE DEVELOPED THE FILM, HE SAW THE IMAGE OF THE KEY. THUS WAS THE

===== FIRST XRAY ACCIDENTALLY TAKEN.

===== � � � End of File � � �

=====

=====

====>

X E D I T 1 File

� �

Figure 6. Power Typing — Data Entered in the File

Using Program Function (PF) Keys
Each PF key is set to an XEDIT subcommand that is executed when you press the
key. Using the PF key saves you the time it takes to type that subcommand on the
command line and press Enter.

You can display the PF key settings with the following subcommand:

====> query pf

The following subcommands are initially assigned to the PF keys:

PF1 BEFORE HELP MENU
PF2 BEFORE SOS LINEADD
PF3 BEFORE QUIT
PF4 BEFORE TABKEY
PF5 BEFORE SCHANGE 6
PF6 ONLY ?
PF7 BEFORE BACKWARD
PF8 BEFORE FORWARD
PF9 ONLY =
PF10 BEFORE RGTLEFT
PF11 BEFORE SPLTJOIN
PF12 BEFORE CURSOR HOME
PF13 BEFORE HELP MENU
PF14 BEFORE SOS LINEADD
PF15 BEFORE QUIT
PF16 BEFORE TABKEY
PF17 BEFORE SCHANGE 18
PF18 ONLY ?
PF19 BEFORE BACKWARD
PF20 BEFORE FORWARD
PF21 ONLY =
PF22 BEFORE RGTLEFT

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 9

 Full-Screen Text Processing

PF23 BEFORE SPLTJOIN
PF24 BEFORE CURSOR HOME

These are the subcommands the editor assigns to the PF keys. Note the editor
assigns keys 13 through 24 to correspond to keys 1 through 12. (For example,
both PF1 and PF13 are set to BEFORE HELP MENU.) For information on the
BEFORE and ONLY operands, see the SET PF subcommand in z/VM: XEDIT
Commands and Macros Reference.

If full-screen CMS is on, the PF key definitions appear in the CMSOUT window,
which automatically pops up on top of your XEDIT screen. The top line of the
CMSOUT window reminds you that full-screen CMS is on. To scroll forward in the
CMSOUT window, type an f (forward) in one of the border corners (indicated by +
signs) and press Enter. Continue to use the f border command until you have seen
all the information in the message window. When there is no more information to
be displayed, the window is automatically removed from your screen.

If full-screen CMS is off, the PF key definitions appear on a cleared screen with a
MORE status at the bottom. You can press Clear to return to the XEDIT screen.

If you would rather have a different definition assigned to one (or more) of the PF
keys, you can use the SET PF subcommand, whose format is:

��──SET─ ──PFn ─string──��

where n is a PF key number, and string is any XEDIT subcommand.

For example,

====> set pf1 input

assigns the INPUT subcommand to the PF1 key. Pressing PF1 immediately places
you in input mode.

When you assign a subcommand to a PF key, the setting remains in effect only for
the current editing session. In the next editing session, the initial settings shown
previously are in effect.

The following sections show how to use some of the PF keys (initial settings).
Others will be discussed where appropriate.

Splitting and Joining Lines
The PF11 key lets you split a line or join two lines at the cursor position. If the
cursor is positioned before (or at) the last character in a line, the line is split. If the
cursor is positioned after the data, the next line is joined to it.

10 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

Splitting a Line (PF11)
To split a line in two, move the cursor under the character where you want the line
to be split, and press PF11.

In the following line, note the position of the cursor, under the F in FOOD.

===== GILA MONSTERS HOLD RESERVE FOOD SUPPLIES IN THEIR TAILS.

Pressing PF11 produces the following lines:

===== GILA MONSTERS HOLD RESERVE _

===== FOOD SUPPLIES IN THEIR TAILS.

The PF11 key is particularly useful if you want to add information to a line. In the
following line, the cursor is under the I in IN:

===== BIRD SPECIES HAVE DWINDLED IN THE LAST 7� MILLION YEARS.

Pressing PF11 splits the line in two:

===== BIRD SPECIES HAVE DWINDLED _

===== IN THE LAST 7� MILLION YEARS.

Now there is room to add information on the line:

===== BIRD SPECIES HAVE DWINDLED FROM 1.5 MILLION TO 1�,���

===== IN THE LAST 7� MILLION YEARS.

Joining Two Lines (PF11)
Pressing PF11 joins two lines at the cursor position when the cursor is positioned
after the end of the data in a line.

For example:

===== These lines are _

===== too short.

Note the cursor position after the end of the data. Pressing PF11 produces the
following line:

===== These lines are too short.

The PF11 key also takes care of leading blanks when a line is split or joined.

For example:

===== Things get worse under pressure.

When the line is split, the second line lines up under the first:

===== Things get worse _

===== under pressure.

The same is true when lines are joined:

===== Join these _

===== lines without leading blanks.

The leading blanks are removed:

===== Join these lines without leading blanks.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 11

 Full-Screen Text Processing

Scrolling Backward and Forward
When a file is too long to fit on one screen, you can use the PF7 and PF8 keys to
scroll back and forth through the file.

Pressing PF7, which is set to the BACKWARD subcommand, scrolls the screen
backward, toward the top of the file, for one screen display.

Pressing PF8, which is set to the FORWARD subcommand, scrolls the screen
forward, toward the end of the file, for one screen display.

You can repeatedly press either key to scroll back or forth for as many screens as
you wish.

Redisplaying a Subcommand
After a subcommand you have typed in the command line is executed, the
command line is cleared. Sometimes, you would like to be able to see the last
subcommand that was executed. Perhaps you did not enter a subcommand the
way you intended to.

Pressing PF6, which is set to the ? subcommand, displays, in the command line,
the last subcommand that was executed (from the command line).

You can then reexecute the subcommand simply by pressing Enter. If you entered
the subcommand incorrectly, you can correct the error by typing over the
subcommand displayed in the command line and then pressing Enter.

Reexecuting a Subcommand
The PF9 key, which is set to the = subcommand, reexecutes the last subcommand
entered. The subcommand does not appear in the command line as it does when
you use the PF6 key (which is set to the ? subcommand).

Each time you press PF9, the subcommand is executed, saving you the time it
takes to retype the subcommand.

Inserting Words Using the Insert Mode Key and a NULL Key (PA2)
One way to insert letters, spaces, or words in a line is to press PA2 (or its
equivalent) and then use the insert mode key. The PA2 key is initially set to
NULLKEY. For information about how to change the initial PA key settings (SET
PAn), see z/VM: XEDIT Commands and Macros Reference.

The PA2 key replaces blank spaces at the end of a line with null characters; it
makes room for the characters in the line to be shifted over so new ones can be
inserted.

The PA2 key operates on only one file line at a time; if you move the cursor to
another file line and want to use insert mode, press PA2 again.

Remember to press Reset when you are finished using insert mode.

This method can be used in both input mode and edit mode, but not in power
typing mode.

12 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

Using the SET NULLS Subcommand
If you have insertions to make on many lines, you can enter the following
subcommand:

====> set nulls on

Then, you can use the insert mode key without pressing PA2 for each line. When
you are finished inserting words, enter the following subcommand:

====> set nulls off

(In power typing mode, you can use the insert mode key without entering a SET
NULLS ON subcommand and without pressing PA2.)

Using Prefix Subcommands
Prefix subcommands are one- or two-character commands that perform basic
editing tasks on a particular line.

Enter prefix subcommands by typing over any position of the five-character prefix
area on one or more lines. When you press Enter, all of the prefix subcommands
that have been typed on the screen are executed.

Adding Lines Using the A Prefix Subcommand
To add a line, type the single character A in the prefix area. When you press
Enter, a blank line is immediately inserted following the line containing the A. A
number can precede or follow the A to indicate adding more than one line. For
example, A5 adds five blank lines.

The following are valid ways to type the A prefix subcommand:

====A Adds one blank line after this line.

a==== Adds one blank line after this line.

1�a== Adds ten blank lines after this line.

===A5 Adds five blank lines after this line.

You can then type information in the added lines. If no information is typed, the
blank lines remain in the file throughout the editing session and after the file is
written to disk or directory.

Deleting Lines Using the D Prefix Subcommand
To delete a line, enter the single character D in the prefix area of a line.

A number can precede or follow the D to indicate deleting more than one line.

To delete a group of consecutive lines, that is, a block of lines, you can enter the
double character DD in the prefix area of both the first and last lines to be deleted.
This method makes it unnecessary for you to count the number of lines to be
deleted.

For example:

==dd= This is the first line I want to remove.

===== This is the second.

===== This is the third.

===== This is the fourth.

===dd This is the fifth.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 13

 Full-Screen Text Processing

When you press Enter, the block of lines is deleted.

The first and last lines of the block need not be on the same screen; you can scroll
the screen before entering the second DD. When you have typed one DD and
pressed Enter, the status area of the screen displays DD pending.... You can use
the PF7 or PF8 keys to scroll the screen until you find the last line of the block, and
then type DD in its prefix area. When you press Enter, the entire block of lines is
deleted.

Figure 7 is a before-and-after example of the A and D prefix subcommands.

� �
DESSERT RECIPES A1 F 8� Trunc=8� Size=15 Line=9 Col=1 Alt=�

===== � � � Top of File � � �

==A== CHOCOLATE SAUCE

===== 12 OUNCES SEMI-SWEET CHOCOLATE

===== 2 OUNCES UNSWEETENED CHOCOLATE

D==== DOLLOP MUSTARD

===== 1 CUP HEAVY CREAM

===2A 2 OUNCES COGNAC

=DD== VINAIGRETTE SAUCE

===== 1/2 CUP OLIVE OIL

===== 1/2 CUP VINEGAR

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== PINCH OF SALT

DD=== DASH OF PEPPER

===== APRICOT GLAZE

=====

===== 1 JAR APRICOT PRESERVES (1 POUND)

===== 2 TABLESPOONS KIRSCH

===== � � � End of File � � �

====>

X E D I T 1 File

� �

� �
DESSERT RECIPES A1 F 8� Trunc=8� Size=12 Line=9 Col=1 Alt=1

===== � � � Top of File � � �

===== CHOCOLATE SAUCE

=====

===== 12 OUNCES SEMI-SWEET CHOCOLATE

===== 2 OUNCES UNSWEETENED CHOCOLATE

===== 1 CUP HEAVY CREAM

===== 2 OUNCES COGNAC

=====

=====

===== APRICOT GLAZE

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

=====

===== 1 JAR APRICOT PRESERVES (1 POUND)

===== 2 TABLESPOONS KIRSCH

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 7. Prefix Subcommands A and D — Before and After

14 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

Recovering Deleted Lines
If you delete one or more lines, you can recover them anytime during an editing
session by using the RECOVER subcommand.

The following subcommand returns lines deleted in an editing session:

��──RECover──n──��

where n represents the number of lines you wish to recover.

Recovered lines are inserted starting at the current line. The last lines deleted are
the first lines recovered. If the lines were deleted from different places in the file,
you put them back where they belong (by using the M prefix subcommand,
discussed later.)

To recover all lines you deleted during an editing session, enter:

====> recover �

In the previous example of the A and D prefix subcommands, six lines were
deleted. Entering,

====> recover 2

results in:

� �
DESSERT RECIPES A1 F 8� Trunc=8� Size=14 Line=9 Col=1 Alt=1

2 line(s) recovered

===== � � � Top of File � � �

===== CHOCOLATE SAUCE

=====

===== 12 OUNCES SEMI-SWEET CHOCOLATE

===== 2 OUNCES UNSWEETENED CHOCOLATE

===== 1 CUP HEAVY CREAM

===== 2 OUNCES COGNAC

=====

=====

===== PINCH OF SALT

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== DASH OF PEPPER

===== APRICOT GLAZE

=====

===== 1 JAR APRICOT PRESERVES (1 POUND)

===== 2 TABLESPOONS KIRSCH

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 8. RECOVER Subcommand — Recovering Two Deleted Lines

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 15

 Full-Screen Text Processing

Adding Indented Lines Using the SI Prefix Subcommand
To continuously add lines of indented text, type the characters SI in the prefix area.
When you press Enter, a line is immediately added following the line that contains
SI. The cursor is positioned at the same column where the text on the previous
line begins, making it easier for you to enter indented text.

Figure 9 through Figure 11 shows how new indented lines are added.

Type the prefix subcommand SI in the prefix area.

� �
 CHOCOLAT COOKIES A1 F 8� Trunc=8� Size=6 Line=6 Col=1 Alt=�

===== � � � Top of File � � �

===== Chocolate-Nut Cookie Ingredients

=====

===== 1/2 Pound of butter

SI=== 1 1/2 Cups of graham cracker crumbs

===== 3 1/2 Ounces coconut flakes

===== 2 Ounces chopped nuts

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== � � � End of File � � �

====>

X E D I T 1 File

� �

When you press Enter, a new line is added.

� �

 CHOCOLAT COOKIES A1 F 8� Trunc=8� Size=7 Line=6 Col=1 Alt=�

===== � � � Top of File � � �

===== Chocolate-Nut Cookie Ingredients

=====

===== 1/2 Pound of butter

===== 1 1/2 Cups of graham cracker crumbs

..... _

===== 3 1/2 Ounces coconut flakes

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== 2 Ounces chopped nuts

===== � � � End of File � � �

====>

 pending...

� �

Figure 9. Prefix Subcommand SI — Adding the First New Line

16 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

Enter text on the new line.

� �
 CHOCOLAT COOKIES A1 F 8� Trunc=8� Size=7 Line=6 Col=1 Alt=1

===== � � � Top of File � � �

===== Chocolate-Nut Cookie Ingredients

=====

===== 1/2 Pound of butter

===== 1 1/2 Cups of graham cracker crumbs

..... 8 Ounces sweetened condensed milk

===== 3 1/2 Ounces coconut flakes

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== 2 Ounces chopped nuts

===== � � � End of File � � �

====>

 pending...

� �

When you press Enter, a new line is automatically added following the one you just
typed on. Each time you type on the new line and press Enter, another new line is
added.

� �
 CHOCOLAT COOKIES A1 F 8� Trunc=8� Size=8 Line=6 Col=1 Alt=1

===== � � � Top of File � � �

===== Chocolate-Nut Cookie Ingredients

=====

===== 1/2 Pound of butter

===== 1 1/2 Cups of graham cracker crumbs

===== 8 Ounces sweetened condensed milk

..... _

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== 3 1/2 Ounces coconut flakes

===== 2 Ounces chopped nuts

===== � � � End of File � � �

====>

 pending...

� �

Figure 10. Prefix Subcommand SI — Continuing to Add New Lines

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 17

 Full-Screen Text Processing

If you do not want to add more lines, press Enter one more time without typing
anything on the new line.

� �
 CHOCOLAT COOKIES A1 F 8� Trunc=8� Size=7 Line=6 Col=1 Alt=1

===== � � � Top of File � � �

===== Chocolate-Nut Cookie Ingredients

=====

===== 1/2 Pound of butter

===== 1 1/2 Cups of graham cracker crumbs

===== 8 Ounces sweetened condensed milk

===== 3 1/2 Ounces coconut flakes

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== 2 Ounces chopped nuts

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 11. Prefix Subcommand SI — After

To add a blank line in a file while using SI, make at least one change (such as
pressing the spacebar once) on the line that contains in the prefix area.
Just using the cursor position keys to move the cursor over a line does not change
the line.

You can leave the line you are adding and make corrections elsewhere in the file if
you type something on the new line first. When you press Enter while the cursor is
away from the new line, another new line is added following the last line that was
added. SI is canceled only if you press Enter and have typed no text on the new
line.

Duplicating Lines Using the " Prefix Subcommand
To duplicate a line, enter the character " (double quote) in the prefix area of a line.

A number can precede or follow the " to duplicate the line more than one time.

For example:

=3"== I want three more copies of this line.

===== They will appear before this line.

When you press Enter, the file looks like this:

===== I want three more copies of this line.

===== I want three more copies of this line.

===== I want three more copies of this line.

===== I want three more copies of this line.

===== They will appear before this line.

To duplicate a block of lines either one time or a specified number of times, you
can type "" (two double quotes) in the first and last lines of the block. A number
can precede or follow the first "" (for example, 5"") to duplicate the block more
than one time.

18 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

When you type one "" and press Enter, the status area of the screen displays ""
pending.... This lets you scroll the screen before completing the block and
pressing Enter.

Moving Lines Using the M, MM, F, and P Prefix Subcommands
To move one line, enter the single character M in the prefix area of the line to
move. Indicate its destination by entering either the character F (following) or P
(preceding) in the prefix area of another line.

When you press Enter, the line containing the M is removed from its original
location and is inserted in one of the following:

� Immediately following the line containing the F
� Immediately preceding the line containing the P.

A number can precede or follow the M to indicate moving more than one line, for
example, 5M or M5 in the prefix area.

The line to move and the destination line can be on different screens. When you
have entered an M or F (or P), the status area of the screen displays a pending
notice. This pending status lets you scroll the screen before entering the other
prefix subcommand.

To move a block of lines, enter the double character MM in the prefix area of both
the first and last lines to be moved. The first and last lines to be moved, and the
destination line can all be on different screens. You can use PF keys to scroll the
screen before pressing Enter.

Figure 12 on page 20 is a before-and-after example of the M prefix subcommand.

Copying Lines Using the C, CC, F, and P Prefix Subcommands
The procedure for copying lines is the same as for moving lines, except that a C or
CC prefix subcommand is used instead of M or MM. The copy operation leaves
the original line(s) in place, and makes a copy at the destination line, which is
indicated by F or P.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 19

 Full-Screen Text Processing

� �
 BOOKS LIST A1 F 8� Trunc=8� Size=17 Line=8 Col=1 Alt=�

===== � � � Top of File � � �

===== AUSTEN DEPICTS SOCIETY FROM THE DRAWING ROOM IN:

===== PRIDE AND PREJUDICE

===== SENSE AND SENSIBILITY

===== COLLINS, A CONTEMPORARY OF DICKENS, WROTE SENSATION NOVELS:

===== ARMADALE

===== THE MOONSTONE

===== THE WOMAN IN WHITE

=mm== ELIOT'S MASSIVE NOVELS DEPICTED SOCIETAL FLAWS:

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== DANIEL DERONDA

===== FELIX HOLT

=mm== MIDDLEMARCH

===== DOSTOEVSKY'S CHARACTERS ARGUE PHILOSOPHY IN DIALECTIC NOVELS:

===== CRIME AND PUNISHMENT

===== THE BROTHERS KARAMAZOV

==f== THE POSSESSED

===== FAULKNER WROTE IN TRAIN OF CONSCIOUSNESS IN:

===== THE SOUND AND THE FURY

====>

X E D I T 1 File

� �

� �
 BOOKS LIST A1 F 8� Trunc=8� Size=17 Line=8 Col=1 Alt=1

===== � � � Top of File � � �

===== AUSTEN DEPICTS SOCIETY FROM THE DRAWING ROOM IN:

===== PRIDE AND PREJUDICE

===== SENSE AND SENSIBILITY

===== COLLINS, A CONTEMPORARY OF DICKENS, WROTE SENSATION NOVELS:

===== ARMADALE

===== THE MOONSTONE

===== THE WOMAN IN WHITE

===== DOSTOEVSKY'S CHARACTERS ARGUE PHILOSOPHY IN DIALECTIC NOVELS:

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== CRIME AND PUNISHMENT

===== THE BROTHERS KARAMAZOV

===== THE POSSESSED

===== ELIOT'S MASSIVE NOVELS DEPICTED SOCIETAL FLAWS:

===== DANIEL DERONDA

===== FELIX HOLT

===== MIDDLEMARCH

===== FAULKNER WROTE IN TRAIN OF CONSCIOUSNESS IN:

===== THE SOUND AND THE FURY

====>

X E D I T 1 File

� �

Figure 12. Prefix Subcommands M and F — Before and After

Setting the Current Line (/)
Many subcommands begin their operations starting with the current line. For
example, the INPUT subcommand makes room for you to enter data after the
current line. You have already seen the INPUT subcommand that inserts lines
after the Top of File line.

You can type the / (diagonal) prefix subcommand in the prefix area of any line on
the screen. When you press Enter, that line becomes the current line. Then, if you
enter an INPUT subcommand, the new lines entered in input mode are inserted
between the current line and the line that followed it.

20 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

Canceling Prefix Subcommands
If you have entered one or more prefix subcommands that create a pending status,
you can cancel all these prefix subcommands by entering the following
subcommand on the command line:

====> reset

When you press Enter, all prefix subcommands disappear from the display and the
prefix areas are restored with equal signs (=====).

If you have typed any prefix subcommands (even those that do not cause a
pending status) but have not yet pressed Enter, you can press Clear to remove
them.

Moving through a File
XEDIT lets you move backward, forward, to the top and bottom, and up and down
in a file.

BACKWARD and FORWARD Subcommands
You have already seen that the PF7 and PF8 keys are set to the BACKWARD and
FORWARD subcommands, which scroll one full screen backward or forward. You
can also enter the BACKWARD and FORWARD subcommands in the command
line.

The format of these subcommands is:

��──BAckward──n──��

��──FOrward──n──��

where n is the number of screen displays you want to scroll backward or forward.
(This is like pressing PF7 or PF8 n times.) If you omit n, the editor scrolls one
screen backward or forward.

If you enter a BACKWARD subcommand when the current line is the Top of File
line, the editor wraps around the file, making the last line of the file the new current
line. Similarly, if you enter a FORWARD subcommand when the current line is the
End of File line, the editor makes the first line of the file the new current line.

TOP and BOTTOM Subcommands
Suppose the file is many screens long and the current screen display is somewhere
in the middle of the file. To go back to the beginning of the file, you could enter
multiple BACKWARD subcommands, or you can enter the TOP subcommand.

The TOP subcommand makes the Top of File line the new current line. Enter the
TOP subcommand this way:

====> top

The BOTTOM subcommand makes the last line of the file the new current line.
Enter the BOTTOM subcommand this way:

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 21

 Full-Screen Text Processing

====> bottom

These subcommands are useful when you want to insert new lines either at the
beginning or end of a file. The TOP subcommand followed by an INPUT or
POWERINP subcommand makes room for you to add lines at the beginning of a
file; use the BOTTOM subcommand followed by INPUT or POWER to add lines to
the end of a file.

DOWN and UP Subcommands
Suppose you want to move the file up or down a few lines instead of a whole
screen. The DOWN subcommand advances the line pointer one or more lines
toward the end of a file. The line pointed to becomes the new current line. For
example,

====> down 5

makes the fifth line down from the current line the new current line. If you omit the
number, 1 is assumed.

The UP subcommand moves the line pointer toward the beginning of the file. The
line pointed to becomes the new current line. For example,

====> up 5

makes the fifth line up from the current line the new current line. If you omit the
number, 1 is assumed.

Figure 13 on page 23 is a before-and-after example of the DOWN subcommand.

22 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

� �
PURIST SCRIPT A1 V 132 Trunc=132 Size=12 Line=5 Col=1 Alt=�

===== � � � Top of File � � �

===== "THE PURIST"

=====

===== I GIVE YOU NOW PROFESSOR TWIST.

===== A CONSCIENTIOUS SCIENTIST.

===== TRUSTEES EXCLAIMED, "HE NEVER BUNGLES!"

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== AND SENT HIM OFF TO DISTANT JUNGLES.

===== CAMPED ON A TROPIC RIVERSIDE,

===== ONE DAY HE MISSED HIS LOVING BRIDE.

===== SHE HAD, THE GUIDE INFORMED HIM LATER,

===== BEEN EATEN BY AN ALLIGATOR.

===== PROFESSOR TWIST COULD NOT BUT SMILE.

===== "YOU MEAN," HE SAID, "A CROCODILE."

===== � � � End of File � � �

====> DOWN 5

X E D I T 1 File

� �

� �
PURIST SCRIPT A1 V 132 Trunc=132 Size=12 Line=1� Col=1 Alt=�

===== "THE PURIST"

=====

===== I GIVE YOU NOW PROFESSOR TWIST.

===== A CONSCIENTIOUS SCIENTIST.

===== TRUSTEES EXCLAIMED, "HE NEVER BUNGLES!"

===== AND SENT HIM OFF TO DISTANT JUNGLES.

===== CAMPED ON A TROPIC RIVERSIDE,

===== ONE DAY HE MISSED HIS LOVING BRIDE.

===== SHE HAD, THE GUIDE INFORMED HIM LATER,

===== BEEN EATEN BY AN ALLIGATOR.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== PROFESSOR TWIST COULD NOT BUT SMILE.

===== "YOU MEAN," HE SAID, "A CROCODILE."

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 13. The DOWN Subcommand — Before and After

Making Changes in a File
When you are looking at a screen of data you have just entered and decide to
make some changes, it is easy to type over the information to be changed.

However, it is not always that simple. Typically, you have numerous files stored on
direct access devices and need to make changes even though you do not know
exactly where the data is located in a file.

The challenge is twofold: find the data, then change it.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 23

 Full-Screen Text Processing

 CLOCATE Subcommand
The CLOCATE subcommand searches a file, beginning with the column after the
current column in the current line, for a character string you specify.

If the string is located, two things happen:

1. The line containing the string becomes the new current line; however, if the
string is in the current line, the line pointer does not move.

2. The column pointer, represented in the scale as a vertical bar (|), moves under
the first character of the string.

These changes are reflected in the file identification area at the top of the screen
(Line=nnn and Col=nn).

One format of the CLOCATE subcommand is as follows:

��─ ──CLocate/string/ ─��

Enclose the string in delimiters. In the examples in this book, the delimiter is a
diagonal (/), but you can use any character that does not appear in the string itself
except for a plus (+), minus (–), not (¬), or period (.). For example:

====> CLOCATE?VM/CMS?

In the following example, the string to be located is in the current line. Therefore,
the line pointer does not move, but look what happens to the column pointer:

===== To be or not to be - that is the question.

 |...+....1....+....2....+....3....+....4....+....5....

====> clocate/be/

===== To be or not to be - that is the question.

 <..|+....1....+....2....+....3....+....4....+....5....

Notice that the column pointer in the scale has moved under the first character (b)
in the string (be).

If you wanted to find all occurrences of “be” throughout the file, you could
repeatedly enter CLOCATE/be/ (or use the PF9 key, which is set to the =
subcommand, for repeated execution). If a string appears more than once in a line,
as in the preceding example, the line pointer remains the same, but the column
pointer moves under the next occurrence of the string.

For example, if you enter CLOCATE/be/ again, the line looks like this:

===== To be or not to be - that is the question.

 <...+....1....+.|..2....+....3....+....4....+....5....

Note the position of the column pointer, under the second “be”.

Each time you enter CLOCATE/be/, the column pointer moves under the next
occurrence of “be”; in addition, the line pointer advances, until all occurrences of
“be” have been found.

24 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

If the string you are searching for is in a backward direction from the current line,
toward the top of the file, you can tell the editor to search backward by typing a
minus sign (–) in front of the string. For example,

====> clocate -/glance/

searches backward for “glance”.

 CHANGE Subcommand
Replacing one word with another is the simplest type of change. If the string you
want to change is not in the current line, you can use the CLOCATE subcommand
to move the line pointer to the line that contains the string. Then, you can use the
following form of the CHANGE subcommand, which changes the first occurrence of
a word in the current line:

��─ ──Change/oldword/newword/ ─��

For example:

===== A rose is a rose is a rose.

 |...+....1....+....2....+....3....+...

====> change/rose/daisy/

===== A daisy is a rose is a rose.

 |...+....1....+....2....+....3....+...

Note that the editor automatically made room in the line for “daisy” even though it is
longer than “rose”. Conversely, a word can be replaced by a shorter word; the
editor removes extra blanks.

You can use the CLOCATE and CHANGE subcommands to locate and change any
string in a file. If the line containing the string is the current line, you do not have
to use a CLOCATE subcommand; the CHANGE subcommand both locates and
changes it.

Making a Selective Change
Suppose you want to change one word to another only some of the time, that is,
you want to make a selective or safe change. You can do this by repeatedly
locating the string you want to change and by entering a CHANGE subcommand
only when you want to change the string. However, there is an easier way.

All you have to do is type a CHANGE subcommand (in the form
CHANGE/oldword/newword/) in the command line. Then, use PF5 to locate each
occurrence of the old word, examine it, and then either change it (by pressing PF6)
or go on to the next occurrence (by pressing PF5).

Here is how to make a selective change:

1. Move the line pointer to the line where you want the search to begin. (You can
use TOP, /, DOWN, or UP.)

2. Type a CHANGE subcommand (CHANGE/oldword/newword/) in the command
line, but do not press Enter.

3. Press PF5. The cursor moves under the first occurrence of oldword, and the
line that contains it is highlighted.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 25

 Full-Screen Text Processing

4. If you want to change the word, press PF6. If not, press PF5 again, and step
number 3 will be repeated.

Using this sequence, you can locate all the occurrences of oldword, and press PF6
to change it only when desired. When all occurrences of oldword on one screen
have been located, the editor automatically scrolls the screen forward.

Figure 14 on page 27 shows an example of using the PF5 and PF6 keys to locate
and selectively change a character string throughout a file. The following
subcommand was typed in the command line but Enter was not pressed:

====> change/rose/daisy/

This subcommand is executed when the PF6 key is pressed.

In the top screen, pressing PF5 has placed the cursor (and the column pointer)
under the first occurrence of “rose”.

In the bottom screen, PF5 was successively pressed until the last occurrence of
“rose”. Then PF6 was pressed to execute the change specified in the command
line.

If you want to locate all occurrences of a string, but you do not want to make any
changes, you can type a CLOCATE/string/ subcommand instead of a CHANGE
subcommand. Then, each time you press PF5, the cursor moves under the next
occurrence of the string and the line is highlighted. Pressing PF6 has no effect.

For more information on making a selective change, see SCHANGE in z/VM:
XEDIT Commands and Macros Reference.

26 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

� �
 ROSE PETALS A1 F 8� Trunc=8� Size=11 Line=1 Col=3 Alt=�

String /ROSE/ found; --- PF6 set for selective CHANGE

===== � � � Top of File � � �

===== A ROSE IS A ROSE IS A ROSE.

 <.|.+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

====>

Macro-read 1 File

� �

� �
 ROSE PETALS A1 F 8� Trunc=8� Size=11 Line=1� Col=23 Alt=1

String /ROSE/ changed to /DAISY/

===== � � � Top of File � � �

===== A ROSE IS A ROSE IS A ROSE.

 <...+....1....+....2..|.+....3....+....4....+....5....+....6....+....7...

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A ROSE.

===== A ROSE IS A ROSE IS A DAISY.

====>

Macro-read 1 File

� �

Figure 14. Using PF5 and PF6 to Make a Selective Change

Making a Global Change
If you want to make a global change, that is, change every occurrence of a word
throughout the file, first make the first line of the file the current line and then use
the following form of the CHANGE subcommand:

��─ ──Change/oldword/newword/ ─�──�──��

For example:

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 27

 Full-Screen Text Processing

===== � � � Top of File � � �

===== A rose is a rose is a rose.

===== A rose is a rose is a rose.

===== A rose is a rose is a rose.

===== A rose is a rose is a rose.

===== � � � End of File � � �

====> change/rose/daisy/ � �

===== � � � Top of File � � �

===== A daisy is a daisy is a daisy.

===== A daisy is a daisy is a daisy.

===== A daisy is a daisy is a daisy.

===== A daisy is a daisy is a daisy.

===== � � � End of File � � �

This form of the CHANGE subcommand can also make a global change starting in
the middle of a file. The change starts with the current line, so you could use the /
prefix subcommand to set the current line at the place where you want the change
to begin.

Another variation of the CHANGE subcommand changes only the first occurrence
in each line of a word throughout the file:

��─ ──Change/oldword/newword/ ─�──��

 CINSERT Subcommand
Often, you need to insert words in a line. You have already seen how to use the
PA2, insert mode keys, and the SET NULLS subcommand. Another way to insert
words is by using the CINSERT subcommand, which lets you insert characters in
the current line immediately before the column pointer.

You can use a CLOCATE/string/ subcommand to move the column pointer to the
desired position. You can also use another form of the CLOCATE subcommand to
move the column pointer,

��──CLocate─ ──:n ─��

where :n represents an absolute column number, easily determined by looking at
the scale.

For example:

===== To be or not to be - that is the question.

 |...+....1....+....2....+....3....+....4....+....5....+

====> clocate :4

===== To be or not to be - that is the question.

 <..|+....1....+....2....+....3....+....4....+....5....+

The column pointer has moved to column four.

28 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

In the following example, the CLOCATE subcommand moves the column pointer;
then the CINSERT subcommand immediately inserts characters before the column
pointer position.

===== If anything can go, it will.

 |...+....1....+....2....+....3....+....4....+....5....+

====> clocate/,/ or ====> clocate :19

(move the column pointer)

===== If anything can go, it will.

 <...+....1....+...|2....+....3....+....4....+....5....+

====> cinsert wrong

(insert “wrong” before the column pointer)

===== If anything can go wrong, it will.

 <...+....1....+...|2....+....3....+....4....+....5....+

(In the CINSERT subcommand above, note there are two spaces between
“CINSERT” and “wrong”: one is the required space between the subcommand
name and the operand; one is the blank space needed between “go” and “wrong”.)

If only one blank space were used, the result would be the following:

===== If anything can gowrong, it will.

The editor lets you insert blanks with the CINSERT subcommand — simply type
the required number of blanks (by pressing the spacebar) in the operand. For
example:

===== If anything can go wrong, it will.

====> clocate/can/

====> cinsert

(Press the spacebar six times.)

===== If anything can go wrong, it will.

If the inserted characters make the line longer than the screen line, the editor
automatically wraps around to the next line. Characters can be inserted up to the
truncation column, as shown in the following example.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 29

 Full-Screen Text Processing

===== It takes less time to do a thing than to explain why you did it.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

====> clocate/than/

(move the column pointer)

===== It takes less time to do a thing than to explain why you did it.

 <...+....1....+....2....+....3...|+....4....+....5....+....6....+....7...

====> cinsert right

(insert the first word. You must type one blank after “right”
to avoid “rightthan”.)

===== It takes less time to do a thing right than to explain why you did it.

 <...+....1....+....2....+....3...|+....4....+....5....+....6....+....7...

====> clocate/./

(move the column pointer again)

===== It takes less time to do a thing right than to explain why you did it.

 <...+....1....+....2....+....3....+....4....+....5....+....6....+....|...

====> cinsert wrong

(insert the second word)

===== It takes less time to do a thing right than to explain why you did it wrong.

Even though the resulting line is longer than a screen line, it is considered to be
one logical line.

Notice the line has one prefix area associated with it. Any prefix subcommands
entered in the prefix area affect the entire logical line. For example, if a D prefix
subcommand is entered, the whole sentence is deleted.

 CFIRST Subcommand
After using subcommands that move the column pointer, it is a good idea to reset
the column pointer to column one by entering the CFIRST subcommand.

For example:

===== If anything can go wrong, it will.

 <...+....1....+.|..2....+....3....+....4....+....5....+

====> cfirst

===== If anything can go wrong, it will.

 |...+....1....+....2....+....3....+....4....+....5....+

30 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

 Setting Tabs
Sometimes you may want to place information in specific columns. The PF4 key
functions like a tab key on a typewriter. Each time you press the PF4 key, the
cursor is positioned under the next tab column, where you can enter data.

The editor defines initial tab settings according to file type; you can display them
with the following subcommand:

====> query tabs

You can change these settings one or more times during an editing session with
the SET TABS subcommand. For example:

====> set tabs 1� 2� 3�

The first time you press PF4, the cursor moves to column 10 on the screen. The
second time, it moves to column 20, and so forth.

You can use PF4 for tabbing in input mode, but not in power typing mode.

You can change the tab settings by entering another SET TABS subcommand, or,
if you would like to see the current tab settings before changing them, you can use
the following subcommand:

====> modify tabs

This displays the current SET TABS subcommand in the command line; you can
type over the numbers and press Enter to define new tabs.

Figure 15 is an example of data entered using PF4 as a tab key. The following
subcommand defines the tab columns:

====> set tabs 5 35 45

� �
TABS EXAMPLE A1 F 8� Trunc=8� Size=13 Line=9 Col=1 Alt=�

===== � � � Top of File � � �

===== TEN COLDEST CITIES

===== AVERAGE TEMPERATURE

===== (F) (C)

===== 1. ULAN-BATOR, MONGOLIA 24.8 -4.�

===== 2. CHITA, U.S.S.R. 27.1 -2.7

===== 3. BRATSK, U.S.S.R. 28.� -2.2

===== 4. ULAN-UDE, U.S.S.R. 28.9 -1.7

===== 5. ANGARSK, U.S.S.R. 29.7 -1.3

===== 6. IRKUTSK, U.S.S.R. 3�.7 -1.1

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== 7. KOMSOMOLSK, U.S.S.R. 3�.7 -�.7

===== 8. TOMSK, U.S.S.R. 3�.9 -�.6

===== 9. KEMEROVO, U.S.S.R. 31.3 -�.4

===== 1�. NOVOSIBIRSK, U.S.S.R. 31.8 -�.1

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 15. Using the PF4 Key for Tabbing

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 31

 Full-Screen Text Processing

Ending an Editing Session
You can end an editing session using FILE or QUIT. The SET AUTOSAVE
subcommand automatically saves your file for you while you are editing it.

 FILE Subcommand
When you use the XEDIT command to create a new file, the file is created in virtual
storage. When you make changes to an existing file, those changes are made to a
copy of the file brought into virtual storage (when the XEDIT command is entered).
However, virtual storage is temporary. To write a new or modified file to disk, SFS
directory, or byte file system for permanent storage, enter the following
subcommand:

====> file

When the FILE subcommand is executed, the file is written to disk or directory and
control is returned to CMS. You must use FFILE to file an empty file. It will only
be saved if the file is located on a directory in a file pool managed by a server at
the z/VM release 1.1 or later level.

 QUIT Subcommand
The QUIT subcommand ends an editing session and leaves the permanent copy of
the file intact on the disk or directory.

You can execute the QUIT subcommand either by pressing the PF3 key or by
entering it on the command line, like this:

====> quit

Use the QUIT subcommand instead of the FILE subcommand when you edit a file
just to examine, but not to change, its contents, or if you discover you have made
errors in changing a file and do not want them to be recorded.

If the file is new and you have not input any data, the file is not written to disk or
directory. Otherwise, if a file is new or has been changed, the editor gives you a
warning message to prevent your inadvertently using QUIT instead of FILE. The
message is:

File has been changed; type QQUIT to quit anyway

If you really do not want to save the file, enter QQUIT (abbreviated as QQ). If you
wish to save the changes, enter FILE.

SET AUTOSAVE Subcommand
Files on disks or SFS directories are not affected if the system malfunctions.
However, a new file you are creating or the changes you are making to an existing
file might be lost if the system fails. To minimize the risk of losing your data, use
the SET AUTOSAVE subcommand, which causes your file to be automatically
written to disk or SFS directory (or saved) after you have typed in or changed a
certain number of lines. Its format is:

��──SET──AUtosave──n──��

where n is the number of typed in or changed lines.

32 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

For example, to write the file to disk or SFS directory every time you have changed
10 lines, enter:

====> set autosave 1�

The number of alterations you have made to your file since the last AUTOSAVE is
displayed in the alteration count (Alt=n) in the file identification line. When the
alteration count is equal to the AUTOSAVE setting, and the file contains at least
one record, the file is saved on disk or SFS directory and the alteration count is
reset to zero.

You can enter the SET AUTOSAVE subcommand at any time during an editing
session, but it is a good idea to enter it right after you enter an XEDIT command to
create a new file or to call an existing file from disk or SFS directory.

When a file is automatically saved, it is written into a new file whose file name is a
number and whose file type is AUTOSAVE. If the system malfunctions during an
editing session, you can recover all changes made up to the time of the last
automatic save. To do this, replace the original file with the AUTOSAVE file using
the CMS COPYFILE command with the REPLACE option. To replace a BFS file
with the AUTOSAVE file, use the OPENVM PUTBFS command with the REPLACE
option. Then, erase the AUTOSAVE file and resume editing.

If you enter a SET AUTOSAVE subcommand while you are creating a new file or
revising an existing file, and then enter a QUIT subcommand, the new or revised
file is not saved, but the AUTOSAVE file is available from disk or SFS directory.

Inserting Data from Another File
The GET subcommand inserts all or part of another file into the file you are editing
after the current line.

Before entering the GET subcommand, make the current line the line after which
you want to insert data. For example, to insert another file at the end of a file, you
use the BOTTOM subcommand. To insert another file in the middle of a file, use
the / prefix subcommand to make the desired line current.

Inserting a Whole File
Suppose you are writing a cookbook, and you created a separate file for each
recipe. To combine two of the recipes into one file, you would use the following
form of the GET subcommand:

��──GET──filename──filetype──��

 or

��──GET──pathname──��

XEDIT determines whether the file ID entered is a CMS file (filename filetype) or a
BFS file (pathname) from the NAMETYPE setting. The default type of file ID is
CMS, but NAMETYPE BFS can be entered on the XEDIT command line to change
the file ID to a BFS file.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 33

 Full-Screen Text Processing

Figure 16 shows how the GET subcommand inserts one whole file at the end of
another file.

The top screen shows a file (DESSERT COOKBOOK) that contains a recipe for
cream puffs. A recipe for almond cookies is contained in another file, COOKIES
COOKBOOK.

The following subcommand is entered:

====> get cookies cookbook

In the bottom screen, the message EOF reached indicates the entire file has been
inserted. Notice that the last line inserted becomes the new current line. The file
DESSERT COOKBOOK now contains two recipes. The file COOKIES
COOKBOOK is left intact.

� �
 DESSERT COOKBOOK A1 F 8� Trunc=8� Size=8 Line=9 Col=1 Alt=�

===== � � � Top of File � � �

===== CREAM PUFFS WITH CHOCOLATE SAUCE

=====

===== 2 OUNCES BUTTER

===== 1/2 TEASPOON SUGAR

===== 1/2 CUP FLOUR

===== PINCH OF SALT

===== 2 EGGS

===== 2 CUPS HEAVY CREAM, WHIPPED

===== � � � End of File � � �

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

====> GET COOKIES COOKBOOK

X E D I T 1 File

� �

� �
 DESSERT COOKBOOK A1 F 8� Trunc=8� Size=15 Line=15 Col=1 Alt=1

EOF reached

===== PINCH OF SALT

===== 2 EGGS

===== 2 CUPS HEAVY CREAM, WHIPPED

===== ALMOND COOKIES

=====

===== 6 TABLESPOONS SOFT BUTTER

===== 1/2 CUP SUGAR

===== 2 EGG WHITES

===== 1 PINCH SALT

===== 1 CUP ALMONDS, SLICED

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 16. Inserting a Whole File

34 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

Inserting Part of Another File
To insert part of another file, specify in the GET subcommand the line number of
the first line and the number of lines to insert. The following GET subcommand
inserts the first 10 lines of a second file:

====> get file2 data 1 1�

If you do not know the line numbers, you can edit a second file without ending
your current editing session, put the lines you want to insert into a temporary file,
and insert this into your current file.

Note: In the byte file system, you cannot GET part of a BFS file.

This might sound complicated, but all you need to learn is one more
subcommand—PUT.

First, let us identify and explain the steps you would take to insert part of another
file and then illustrate them with an example.

1. While editing the first file, make the line after which you want to insert data the
current line. Then, without ending your current editing session, enter an XEDIT
subcommand to edit the second file. The second file will appear on the screen.

2. The PUT subcommand stores lines in a temporary holding area, starting with
the current line, up to an ending, or target line. Make the first line you want to
insert the current line. Then enter the PUT subcommand; its format is:

��──PUT──target──��

where target identifies the end of the group of lines to insert. You can specify
a target in various ways. For more information, see Chapter 4, “Using Targets”
on page 71. Three ways are described here. They are all equivalent; you can
choose the method you prefer.

Starting with the current line, you can count the number of lines you want to
insert and specify this number as the target. For example, if a file contains:

===== a loaf of bread

===== a jug of wine

===== thou

===== a portable television

and the line containing “a loaf of bread” is current, the following subcommand
stores all four lines:

====> put 4

Or you can specify the target as a character string; the editor stores lines, from
the current line, up to, but not including, the line containing the string.

For example, the following subcommand stores the first three lines but not the
line containing “a portable television.”

====> put/television/

You can also specify a target as the file line number. To display the line
numbers in the prefix area, enter:

====> set number on

The resulting lines might look like this:

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 35

 Full-Screen Text Processing

���1� a loaf of bread

���11 a jug of wine

���12 thou

���13 a portable television

To specify a target as a line number, type a colon (:) followed by the line
number.

The following subcommand puts lines up to, but not including, line 13.

====> put :13

3. Enter a QUIT subcommand to return to your original file.

 4. Then enter:

====> get

No operands are required. The lines stored with the PUT subcommand are
inserted; the last line inserted becomes the new current line.

Figure 17 through Figure 20 shows how the PUT and GET subcommands are
used to insert part of a file into another file.

The file DESSERT COOKBOOK contains a recipe for cream puffs. Recipes for
sauces are in a separate file, SAUCES COOKBOOK. To insert the recipe for
chocolate sauce after the recipe for cream puffs:

1. XEDIT DESSERT COOKBOOK and make the current line the line after which
you want to insert the sauce recipe (use the / prefix subcommand). The
current line should be the last line of the cream puffs recipe (Figure 17 on
page 37).

Then enter the following subcommand:

====> xedit sauces cookbook

2. This file appears on the screen. The status area (lower right corner) indicates
two files are being edited. Use the UP subcommand or the / prefix
subcommand to move the line pointer to the beginning of the lines to be
inserted. The beginning line contains CHOCOLATE SAUCE (Figure 18 on
page 37). Now enter the subcommand to store the chocolate sauce recipe:

====> put/VINAIGRETTE/

3. The stored lines begin with CHOCOLATE SAUCE and end with the line
preceding VINAIGRETTE. You could also have entered the PUT subcommand
as PUT :15 or PUT 7. In this screen, line numbers are displayed in the prefix
area, which means that a SET NUMBER ON subcommand was entered. After
you enter the PUT subcommand, quit this file by entering:

====> quit

4. The original file comes back on the screen (Figure 19 on page 38). To insert
the lines that were stored, enter:

====> get

The sauce recipe is inserted, as shown in Figure 20 on page 38. The last line
inserted is the new current line.

36 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

� �
 DESSERT COOKBOOK A1 F 8� Trunc=8� Size=15 Line=8 Col=1 Alt=�

===== � � � Top of File � � �

===== CREAM PUFFS WITH CHOCOLATE SAUCE

=====

===== 2 OUNCES BUTTER

===== 1/2 TEASPOON SUGAR

===== 1/2 CUP FLOUR

===== 1 PINCH OF SALT

===== 2 EGGS

===== 2 CUPS HEAVY CREAM, WHIPPED

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== ALMOND COOKIES

=====

===== 6 TABLESPOONS SOFT BUTTER

===== 1/2 CUP SUGAR

===== 2 EGG WHITES

===== 1 PINCH SALT

===== 1 CUP ALMONDS, SLICED

===== � � � End of File � � �

====> XEDIT SAUCES COOKBOOK

X E D I T 1 File

� �

Figure 17. Inserting Part of a File — Call Out the Second File

� �
 SAUCES COOKBOOK A1 F 8� Trunc=8� Size=2� Line=8 Col=1 Alt=�

����� � � � Top of File � � �

����1

����2 APRICOT GLAZE

����3

����4 1 JAR APRICOT PRESERVES (1 POUND)

����5 2 TABLESPOONS KIRSCH

����6

����7

����8 CHOCOLATE SAUCE

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

����9

���1� 12 OUNCES SEMI-SWEET CHOCOLATE

���11 2 OUNCES UNSWEETENED CHOCOLATE

���12 1 CUP HEAVY CREAM

���13 2 OUNCES COGNAC

���14

���15 VINAIGRETTE SAUCE

���16

���17 1/2 CUP OLIVE OIL

====> PUT/VINAIGRETTE/

X E D I T 2 Files

� �

Figure 18. Inserting Part of a File — Put Lines to Be Inserted, Then QUIT

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 37

 Full-Screen Text Processing

� �
 DESSERT COOKBOOK A1 F 8� Trunc=8� Size=15 Line=8 Col=1 Alt=�

===== � � � Top of File � � �

===== CREAM PUFFS WITH CHOCOLATE SAUCE

=====

===== 2 OUNCES BUTTER

===== 1/2 TEASPOON SUGAR

===== 1/2 CUP FLOUR

===== 1 PINCH OF SALT

===== 2 EGGS

===== 2 CUPS HEAVY CREAM, WHIPPED

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== ALMOND COOKIES

=====

===== 6 TABLESPOONS SOFT BUTTER

===== 1/2 CUP SUGAR

===== 2 EGG WHITES

===== 1 PINCH SALT

===== 1 CUP ALMONDS, SLICED

===== � � � End of File � � �

====> GET

X E D I T 1 File

� �

Figure 19. Inserting Part of a File — GET

� �
 DESSERT COOKBOOK A1 F 8� Trunc=8� Size=22 Line=15 Col=1 Alt=1

===== 1 PINCH OF SALT

===== 2 EGGS

===== 2 CUPS HEAVY CREAM, WHIPPED

===== CHOCOLATE SAUCE

=====

===== 12 OUNCES SEMI-SWEET CHOCOLATE

===== 2 OUNCES UNSWEETENED CHOCOLATE

===== 1 CUP HEAVY CREAM

===== 2 OUNCES COGNAC

=====

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== ALMOND COOKIES

=====

===== 6 TABLESPOONS SOFT BUTTER

===== 1/2 CUP SUGAR

===== 2 EGG WHITES

===== 1 PINCH SALT

===== 1 CUP ALMONDS, SLICED

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 20. Inserting Part of a File — The Lines Are Inserted

 Getting Help
If you forget how to use a subcommand or would like to see information about
subcommands not covered in this subset, press PF1, which is set to the HELP
MENU subcommand.

When you press PF1, a list of all subcommands and macros available with the
editor appears on the screen. Move the cursor to the desired subcommand and
press Enter. The subcommand description appears on the screen, replacing the

38 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

HELP Menu. Pressing PF3 returns you to the previous screen, and pressing PF4
takes you out of the HELP display and restores your file on the screen.

Learning More about the Editor
The following is a partial list of XEDIT subcommands and macros that are useful in
text processing. You can learn how to use these and other XEDIT subcommands
and macros by using the HELP Facility or by referring to z/VM: XEDIT Commands
and Macros Reference.

 ALL
Displays a collection of lines for editing, excluding others from display.

 ALTER
Changes a character to one that is not available on your keyboard, like a
backspace character.

 COMPRESS, EXPAND
Repositions data in new tab columns without retyping.

 LEFT, RIGHT
Displays columns of data that extend to the left or right of the screen
display.

 LOWERCAS, UPPERCAS
Translates alphabetic characters to all lowercase or all uppercase.

 MERGE
Combines two sets of lines.

 SET ARBCHAR
Controls whether you can specify only the beginning and end of a long
string to be located or changed.

 SET CASE
Controls whether data you type is entered in the file the same way you type
it or translated into uppercase.

 SET POINT
Assigns name(s) to any line; you can reference the name(s) in XEDIT
subcommands.

 SET SCREEN
Controls dividing the screen so you can edit multiple files or multiple views
of the same file.

 SET VERIFY
Controls whether changed lines are displayed in the message area and
what columns of data are displayed, in character or hexadecimal or both.

 SORT
Arranges the file lines in alphabetic order.

< (SHIFT LEFT) MACRO
This prefix macro shifts one line or a block of lines one or more columns to
the left.

> (SHIFT RIGHT) MACRO
This prefix macro shifts one line or a block of lines one or more columns to
the right.

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 39

 Full-Screen Text Processing

Summary of XEDIT Subset
The following table summarizes the subcommands in this chapter. Minimum
abbreviations of subcommands are in uppercase letters.

Table 1. XEDIT Subcommand Summary

Function Subcommand/PF Key

To create or edit a file Xedit

To enter data Input POWerinp

To scroll the screen BAckward FOrward TOP Bottom

To set PF keys SET PFn

To display current PF key settings Query PFn

To move the line pointer Down Up

To move the column pointer CLocate CFirst

To make changes to the file Change CInsert

To locate data CLocate

To recover deleted data RECover

To set tabs SET TABS MODify TABS

To display current tab settings Query TABS

To display line numbers in the prefix area SET NUMber ON

To specify whether trailing blanks are
replaced with nulls to allow character
insertion

SET NULls ON

To end an editing session without saving
the changes

QUIT

To automatically save a file after
changing a specified number of lines

SET AUtosave

To save the changed file when you have
finished working on it

FILE

To store lines to be inserted in another
file with a subsequent GET

PUT

To imbed a complete or a partial copy of
one file in another

GET

To cancel pending prefix subcommands RESet

Table 2 (Page 1 of 2). Prefix Subcommands

Function

Prefix Subcommands:

Subcommand/PF Key

To add lines A

To delete lines D

To add lines and position cursor for
indented text

SI

To duplicate lines "

To move lines M and F or P

40 z/VM: XEDIT User's Guide

 Full-Screen Text Processing

Table 2 (Page 2 of 2). Prefix Subcommands

Function

Prefix Subcommands:

Subcommand/PF Key

To copy lines C and F or P

To set the current line /

Table 3. PF Key Initial Settings

PF Keys, Initial Settings:

To get a HELP display PF1, PF13

To add a line PF2, PF14

To end a session without saving PF3, PF15

To use a tab key PF4, PF16

To locate and selectively change PF5, PF17; PF6, PF18

To redisplay a subcommand PF6, PF18

To scroll one screen backward PF7, PF19

To scroll one screen forward PF8, PF20

To repeat previous subcommand PF9, PF21

To move the display to the right, and
move it back when you press the key
again

PF10, PF22

To split or join lines at the cursor PF11, PF23

To move the cursor from the screen to
the command line, or from the command
line to the screen.

PF12, PF24

 Chapter 1. An XEDIT Subset: Full-Screen Text Processing 41

 Full-Screen Text Processing

42 z/VM: XEDIT User's Guide

 Practice Exercises

 Chapter 2. Practice Exercises

This chapter will give you practice in using some of the XEDIT subcommands
discussed in Chapter 1, “An XEDIT Subset: Full-Screen Text Processing” on
page 1.

There are five exercises in the chapter. You do not have to do all of them at one
time, but you should do them in sequence.

Some of the data you are asked to type contains errors so you can use
subcommands to correct them.

Remember to press Enter each time you type a subcommand in the command line.
However, when you press a PF key, do not press Enter.

Exercise 1. Creating a File
This part of the exercise covers the following subcommands: SET AUTOSAVE,
QUERY TABS, SET TABS, INPUT, FILE, and the PF4 key.

Your first file will contain a list of famous inventions. The file name is INVENTOR;
the file type is SCRIPT.

Type the following command in the CMS command line:

xedit inventor script

Now press Enter. The file identification line appears on the first line of the screen.
The message, Creating new file:, appears on the second line (the message line).
Take a moment to review the screen layout described in Figure 1 on page 2.
Notice that the cursor is positioned on the command line, after the large arrow
(====>).

To cause your file to be written to disk or an SFS directory at periodic intervals,
enter the following subcommand:

====> set autosave 2�

You will enter data in the file using PF4 for tabbing. To display the editor’s initial
tab settings for this file type, enter:

====> query tabs

The tab settings for a SCRIPT file type are displayed in the message line. You are
going to use different tab settings, so enter:

====> set tabs 1� 3�

Now you are ready to begin entering data. Enter:

====> input

The cursor is positioned on the first line of the input zone. Press PF4, and the
cursor moves to the column (10) you specified in the SET TABS subcommand.
Type:

 Telescope

 Copyright IBM Corp. 1990, 2005 43

 Practice Exercises

Press PF4 again. The cursor moves to column 30. Type:

 16�8

Press PF4. The cursor moves to column 10 on the next line of the input zone.
Type:

Hot air balloon

Press PF4 and then type:

 1783

Using PF4 to move the cursor, type the following:

 Margarine 1869

 Tranquilizer 1952

Now press Enter. The status area (lower right corner) shows you are still in input
mode. The data you entered has moved up on the screen, with the last line you
typed becoming the new current line. If you had more data to type, you could start
typing at the cursor position. For now, press Enter to return to edit mode.

 Telescope 16�8

Hot air balloon 1783

 Margarine 1869

 Tranquilizer 1952

Enter:

====> file

Checkpoint: If you have done everything correctly, your screen should
look like this:

Exercise 2. Using Power Typing
This part of the exercise covers the following subcommands: POWERINP, TOP,
BOTTOM, UP, DOWN, /, the PF11 key, and the PA2 and insert mode keys.

Your second file will contain a description of the invention of the telescope. Enter:

xedit telescop script

In this file, you will enter the data in power typing mode. Enter:

====> power

In power typing mode, you type continuously, without regard for the length of the
screen line. If you come to the end of a line and you are in the middle of a word,
just keep on typing. The cursor will move to the beginning of the next line. Two of
the words you type will start on one line and end on the next: “accidentally” and
“mounted”.

Now type the following data (with errors):

One day in 16�8 held a lens in each hand and peered through both at once, accide

ntally discovering that two lenses placed in line would magnify an image. #He mo

unted lens at each end of a tube and invented the telescope.

Press ENTER twice. You are now in edit mode.

44 z/VM: XEDIT User's Guide

 Practice Exercises

Checkpoint: Your file should look like this:

One day in 16�8 held a lens in each hand and peered through both at

once, accidentally discovering that two lenses placed in line would

magnify an image.

He mounted lens at each end of a tube and invented the telescope.

The two words that began on one line and finished on the next (“accidentally” and
“mounted”) are put back together. The second sentence starts on a new line,
because you typed a pound sign (#) before it. (A pound sign, the line end
character, causes the data that follows it to start on a new line.)

Obviously, the first sentence is missing some words. One way to insert a long
phrase in a line is to split the line in two. Move the cursor under the h in “held”.
Press PF11, and the line is split.

Now type:

a Dutch spectacle maker named Lippershey

In the second sentence, the word “a” is missing before the word “lens”. Move the
cursor under the l in “lens”. Press PA2, and press the insert mode key. Type the
word “a” and press the spacebar once. The sentence has moved over to
accommodate the added word. Now press Reset to take you out of insert mode.

Checkpoint: Your file should look like this:

One day in 16�8 a Dutch spectacle maker named Lippershey

held a lens in each hand and peered through both at

once, accidentally discovering that two lenses placed in line would

magnify an image.

He mounted a lens at each end of a tube and invented the telescope.

The rest of this exercise will give you practice in moving the line pointer. If your
cursor is not on the command line, press PF12 to bring it down to the command
line and enter:

====> top

The new current line is the Top of File line. If you wanted to add data at the
beginning of the file in either input mode or power typing mode, you would enter
TOP, followed by either INPUT or POWER.

Enter:

====> bottom

The new current line is the last line of the file. Enter:

====> up 2

The new current line is two lines up, toward the top of file.

Enter:

====> down 2

The new current line is two lines down, toward the end of file.

 Chapter 2. Practice Exercises 45

 Practice Exercises

Now type a / (diagonal) in the prefix area of any line, like this:

====/ or this: ==/== or this: /====

When you press Enter, that line becomes the new current line.

When your file is too big to fit on one screen, you can use PF7 and PF8 (the
BACKWARD and FORWARD subcommands) to scroll the screen.

Enter the following subcommand to write this file to disk or directory:

====> file

Exercise 3. Using Prefix Subcommands
This part covers the RECOVER subcommand and the following prefix
subcommands: A, D, M, and P.

To create this file, enter:

xedit balloon script

Enter:

====> input

Type:

The heat inflated the petticoat and caused it to rise.

The Montgolfier brothers were paper manufacturers.

Hot air from a fire lifted the first balloon.

Press Enter twice to reenter edit mode.

Let us rearrange these sentences. Type an M in the prefix area of the second
sentence, and a P in the prefix area of the first sentence, like this:

====p The heat inflated the petticoat and caused it to rise.

===m= The Montgolfier brothers were paper manufacturers.

Now press Enter. The sentences have been reversed.

Type an A in the prefix area of the first sentence in the file and press Enter. In the
blank line you just added, type:

They realized hot air's ability to float a balloon by accident.

The cursor is at the end of the line you just typed. Without moving the cursor,
press PF2, which adds a new blank line and moves the cursor to the beginning of
it.

Now type:

Jacques' wife washed a petticoat and hung it over a fire to dry.

Type 5a in the prefix area of the last line, and press Enter. Type in anything you
want. Now, type DD in both the first and last lines you added, like this:

=dd== This is your first line.

 .

 .

 .

=dd== This is your fifth line.

46 z/VM: XEDIT User's Guide

 Practice Exercises

Press Enter.

Do you really want to keep those lines? If you do, enter:

====> recover �

Checkpoint: Your file should look like this:

The Montgolfier brothers were paper manufacturers.

They realized hot air's ability to float a balloon by accident.

Jacques' wife washed a petticoat and hung it over a fire to dry.

The heat inflated the petticoat and caused it to rise.

Hot air from a fire lifted the first balloon.

Enter:

====> file

 Exercise 4. Making Changes
This part of the exercise covers the following subcommands: CHANGE, PF5, and
PF6 keys for a selective change.

Enter:

xedit margarin script

Enter:

====> input

Type these lines:

Bitter was expensive and in short supply.

Napoleon sought a substitute for butter that wasn't bitter.

He needed something like bitter that would store well on ships.

He held a contest and offered a prize for the best bitter substitute.

Press Enter twice to reenter edit mode.

Move the line pointer to the first line of the file by entering:

====> up 3

To change the first occurrence of “Bitter,” enter:

====> change/Bitter/Butter/

Now you are going to practice using the PF5 and PF6 keys to make a selective
change. You want to change “bitter” to “butter,” but not all of the time.

Type the following subcommand in the command line, but do not press Enter.

====> c/bitter/butter/

Now press PF5. The cursor moves under “bitter” in the second sentence, and the
line is highlighted. The message line tells you that if you want to make the change,
press PF6. This “bitter” is fine, so press PF5 again.

 Chapter 2. Practice Exercises 47

 Practice Exercises

In the third sentence, you want to make the change, so press PF6. The message
line tells you the change has been made.

 Press PF5.
 Press PF6.

Checkpoint: Your file should look like this:

Butter was expensive and in short supply.

Napoleon sought a substitute for butter that wasn't bitter.

He needed something like butter that would store well on ships.

He held a contest and offered a prize for the best butter substitute.

Enter:

====> file

Exercise 5. Getting It All Together
This part covers the following subcommands: GET and PUT.

You now have the following files:

 inventor script
 telescop script
 balloon script
 margarin script

The following exercise will give you practice in transferring data between files.
Enter:

xedit inventor script

You are going to insert the entire file named TELESCOP SCRIPT at the end of this
file.

To make the last line of this file current, enter:

====> bottom

Now enter:

====> get telescop

You do not have to specify a file type when you GET a file if the file type of the file
you are getting is the same as the file you’re currently editing.

The message EOF reached tells you the entire file has been inserted. The new
current line is the last line inserted. The file TELESCOP is still on disk or directory;
only a copy of it has been inserted.

Now you are going to insert part of a file into this one.

Enter:

====> xedit balloon

This file now appears on the screen. Notice the status area indicates you are
editing two files, that is, two files are in virtual storage.

48 z/VM: XEDIT User's Guide

 Practice Exercises

You are going to insert lines two and three into the INVENTOR file. Enter:

====> down 2

Enter:

====> put 2

Enter:

====> quit

The INVENTOR file now appears on the screen. Enter:

====> get

Lines two and three from the BALLOON file are inserted; the new current line is the
last line that was inserted.

Now you are going to insert the entire MARGARIN file. Enter:

====> get margarin

The entire file is inserted.

Checkpoint: Your file should look like this:

 Telescope 16�8

Hot air balloon 1783

 Margarine 1869

 Tranquilizer 1952

One day in 16�8 a Dutch spectacle maker named Lippershey

held a lens in each hand and peered through both at

once, accidentally discovering that two lenses placed in line would

magnify an image.

He mounted a lens at each end of a tube and invented the telescope.

They realized hot air's ability to float a balloon by accident.

Jacques' wife washed a petticoat and hung it over a fire to dry.

Butter was expensive and in short supply.

Napoleon sought a substitute for butter that wasn't bitter.

He needed something like butter that would store well on ships.

He held a contest and offered a prize for the best butter substitute.

You have inserted two whole files and one partial file into another file. This is a
good place to practice prefix subcommands. Using the A prefix subcommand, add
lines between the different inventions, and then type headings in those lines. You
can also rearrange the inventions by using the M and P (or F) prefix
subcommands. When you are finished, enter:

====> quit

A warning message tells you the file has been changed and to enter QQUIT if you
want to quit anyway. Enter:

====> qquit

 Chapter 2. Practice Exercises 49

 Practice Exercises

50 z/VM: XEDIT User's Guide

 Editing on a Typewriter Terminal

Chapter 3. Using the Editor on a Typewriter Terminal

This chapter is written for the person with limited data processing experience, but
some CMS experience is assumed. For example, you must know how to log on
and enter the CMS environment. You should also be familiar with the concept of a
CMS file.

This chapter provides a working knowledge of the editor. The subcommands
presented here are a subset of XEDIT subcommands for text processing on a
typewriter terminal. You can use them to create a file, enter data, change the file,
and transfer data between files. Many of the subcommands presented in this
chapter work similarly in disconnect mode. For more information, see “Disconnect
Mode Restrictions” on page 68. The editor has many additional capabilities,
described in the rest of this book and in z/VM: XEDIT Commands and Macros
Reference.

Editing a File
Editing is changing, adding, or deleting data in a CMS file. You make these
changes interactively: you tell the editor to make a change, the editor makes it, and
then you request another change.

When you edit a file that does not exist, you are creating a file.

 XEDIT Command
After you log on and enter the CMS environment, you can enter the edit
environment. Invoke the editor with the CMS command XEDIT, whose format is:

��──Xedit──filename──filetype──��

You can also create a different type of file called a byte file system (BFS) file by
entering:

��──Xedit──pathname──(NAMetype──BFS──��

If the file does not already exist, the editor creates it in virtual storage.

If the file already exists and has a file mode of A, a copy of that file is brought into
virtual storage. Then you can use XEDIT subcommands to change lines in that file.
Enter XEDIT subcommands by typing the subcommand and then pressing the
Return key. (You can enter XEDIT subcommands in uppercase or lowercase, or a
combination of both.)

When a subcommand changes a line, the editor displays or verifies the changed
line. The editor also communicates with you by displaying error or information
messages. In this chapter, anything the editor displays is enclosed in a box.
Subcommands or data you enter are not.

Now let us create a simple file called POEM1 SCRIPT. Enter:

 Copyright IBM Corp. 1990, 2005 51

 Editing on a Typewriter Terminal

xedit poem1 script

Because the file is new, the editor responds with the following messages:

Creating new file:

 XEDIT:

 Entering Data
You enter data with the INPUT subcommand. The QUERY LRECL subcommand
lets you find the logical record length of your file.

 INPUT Subcommand
After you enter the XEDIT command, you are in edit mode. You must be in edit
mode to enter XEDIT subcommands.

To enter data in the file, you must be in input mode. To enter input mode, type the
following subcommand and press the Return key:

input

The editor displays the following message:

 Input mode:

You can then type in data. Each line you enter while in input mode is a data line
and is written in the file. To end a line, press the Return key; the line is then
inserted into the copy of the file in virtual storage.

Now let us start typing lines to be entered in the file:

"THE OCTOPUS," by Ogden Nash

Tell me, O Octopus, I begs,

Is those things arms, or is they legs?

I marvel at thee, Octopus;

If I were thou, I'd call me Us.

When you are done typing data and want to return to edit mode (to make changes
to the file or to end the editing session), press the Return key on a null line.

The editor responds:

 XEDIT:

While you are editing, you can enter input mode at any time to insert new lines of
data in the file. The editor inserts the lines you type after the current line. In this
example, because the file is new, the lines are inserted at the beginning of the file.
Later, you will see how to insert lines between any two existing file lines.

The following two subcommands (discussed later) display the data you entered:

top

 TOF:

type �

52 z/VM: XEDIT User's Guide

 Editing on a Typewriter Terminal

 TOF:

"THE OCTOPUS," by Ogden Nash

Tell me, O Octopus, I begs,

Is those things arms, or is they legs?

I marvel at thee, Octopus;

If I were thou, I'd call me Us.

 EOF:

 Column Pointer
Notice the underscore below the first letter in each line. The underscoring
represents the column pointer.

Some subcommands start at the column pointer to perform their editing functions;
XEDIT subcommands that are discussed later move the column pointer.

 QUERY LRECL
No line can be longer than the logical record length of the file, which varies with file
type. To find out the logical record length of any file, enter:

query lrecl

In the preceding example, the file type is SCRIPT, which has a logical record length
of 132. If you type more than 132 characters in a line before pressing the Return
key, the editor truncates the extra characters.

Moving through a File
You can move through a file with the TYPE, UP, DOWN, TOP, and BOTTOM
subcommands.

 Line Pointer
The line pointer points to the current line. The current line changes as you move
up and down in a file editing various lines. When the line that is current changes,
the line pointer moves.

 TYPE Subcommand
Many XEDIT subcommands perform their functions starting with the current line.
Therefore, you often need to know which line is current so you can move the line
pointer, if necessary.

To display the current line, enter:

type

To display more than one line, enter the TYPE subcommand with the number of
lines. For example, to display five lines, beginning with the current line, enter:

type 5

To display the entire file, first position the line pointer at the top of the file:

top

Then, to display all the lines in the file, enter:

type �

 Chapter 3. Using the Editor on a Typewriter Terminal 53

 Editing on a Typewriter Terminal

After the TYPE subcommand is executed, the line pointer is at the last line that was
displayed.

UP and DOWN Subcommands
You can move the line pointer up or down one or more lines. The UP
subcommand moves the line pointer toward the beginning of the file and displays
the new current line. Its format is:

��──UP──n──��

where n is the number of lines to move the line pointer. If you omit the number, 1
is assumed.

The DOWN subcommand moves the line pointer toward the end of the file and
displays the new current line. Its format is:

��──Down──n──��

where n is the number of lines to move the line pointer. If you omit the number, 1
is assumed.

To insert new lines of data after any existing file line:

1. Enter the UP or DOWN subcommand to move the line pointer to the line after
which you want data inserted.

2. Enter the INPUT subcommand.

TOP and BOTTOM Subcommands
You can also move the line pointer to the beginning or end of the file. To move the
line pointer to the null TOF line before the first line of the file, enter:

top

To move the line pointer to the last file line, enter:

bottom

To begin entering new lines either at the beginning or the end of a file, enter:

top (or bottom)

input

Making Changes in a File
Subcommands that insert, delete, or change characters operate from the column
pointer, represented as an underscore character (_).

54 z/VM: XEDIT User's Guide

 Editing on a Typewriter Terminal

 CLOCATE Subcommand
The CLOCATE subcommand searches a file, starting with the column after the
column pointer in the current line, for a character string you specify. One format of
the CLOCATE subcommand is:

��─ ──CLocate/string/ ─��

Enclose the string in delimiters, such as the diagonal (/). You can use any
character except plus (+), minus (–), not (¬), or period (.) that is not in the
character string (for example: CLOCATE?VM/CMS?).

If the string is found, the line containing the string becomes the new current line
(and is displayed); the column pointer moves under the first character of the string.

For example, for the file POEM1 SCRIPT, the subcommands:

top

clocate/legs/

display the following line:

Is those things arms, or is they legs?

 CFIRST Subcommand
After using subcommands that move the column pointer, it is a good idea to reset
the column pointer to the beginning of the line by entering the CFIRST
subcommand; enter:

cfirst

In the previous example, with the column pointer under the “l” in “legs”, entering
CFIRST results in:

Is those things arms, or is they legs?

 CINSERT Subcommand
The CINSERT subcommand inserts characters immediately before the column
pointer.

To insert the phrase “exactly 29,000 feet” before the word “high” in the following
sentence

Mt. Everest is high.

first move the column pointer to the first character in “high” by entering:

clocate/high/

Then insert the phrase:

cinsert exactly 29,��� feet

(Press the spacebar once after the word “feet” so a blank separates “feet” and
“high”.) The resulting line is:

Mt. Everest is exactly 29,��� feet high.

 Chapter 3. Using the Editor on a Typewriter Terminal 55

 Editing on a Typewriter Terminal

 CDELETE Subcommand
The CDELETE subcommand deletes one or more characters from the current line,
starting at the column pointer.

A file contains the following line with one too many “or not to be”:

To be or not to be or not to be - that is the question.

Because deletion starts at the column pointer, first move the column pointer under
the first “or not to be” by entering:

clocate/or/

Then, count the number of characters to delete, starting at the column pointer, and
use the CDELETE subcommand:

cdelete 13

The resulting line is displayed:

To be or not to be - that is the question.

To avoid counting the number of characters, you can specify the operand of the
CDELETE subcommand as a character string:

cdelete/or/

This form of the CDELETE subcommand means, “delete characters from the
column pointer to the first character of the string specified in the operand.” The
result is the same: the extra “or not to be” is removed.

 CAPPEND Subcommand
The CAPPEND subcommand adds data to the end of the current line. Its format is:

��──CAppend──text──��

where text is the data to add to the end of the line.

For example, a file contains the following line:

It is an ancient mariner,

To add “and he stoppeth one of three.” at the end of the line, enter:

cappend and he stoppeth one of three.

(Two blanks separate the subcommand name and the operand.)

The resulting line looks like this:

It is an ancient mariner, and he stoppeth one of three.

56 z/VM: XEDIT User's Guide

 Editing on a Typewriter Terminal

 CHANGE Subcommand
The CHANGE subcommand replaces one word with another. Use the following
form to change the first occurrence of a word in the current line:

��─ ──Change/oldword/newword/ ─��

For example, the current line is:

A rose is a rose is a rose.

change/rose/daisy/

results in:

A daisy is a rose is a rose.

Note that the editor automatically makes room in the line for “daisy,” even though it
is longer than “rose”. Conversely, when you replace a word with a shorter word, the
editor removes extra blanks.

Use the CLOCATE and CHANGE subcommands to locate and change any string in
a file. If the line containing the string is the current line, you do not have to use a
CLOCATE subcommand; the CHANGE subcommand both locates the string and
changes it.

Making a Global Change
To change every occurrence of a word, first move the line pointer to the line where
you want the change to begin, and then use the following form:

��─ ──Change/oldword/newword/ ─�──�──��

In the following example, the word “rose” is changed to “daisy” every time it
appears. (The line pointer is already positioned at the first line shown.)

A rose is a rose is a rose.

A rose is a rose is a rose.

A rose is a rose is a rose.

A rose is a rose is a rose.

change/rose/daisy/ � �

produces the following changes (the editor displays only changed lines):

A daisy is a daisy is a daisy.

A daisy is a daisy is a daisy.

A daisy is a daisy is a daisy.

A daisy is a daisy is a daisy.

Another variation of the CHANGE subcommand changes only the first occurrence
in each line of a word throughout the file:

��─ ──Change/oldword/newword/ ─�──��

 Chapter 3. Using the Editor on a Typewriter Terminal 57

 Editing on a Typewriter Terminal

Making a Selective Change
Suppose you want to change one word to another only some of the time. You can
repeatedly execute the CLOCATE subcommand to scan the file, entering a
CHANGE subcommand only when you want to make the change.

 = Subcommand
Or, instead of typing the CLOCATE subcommand over and over, you can use the =
subcommand, which repeats the last subcommand you entered. Using the =
subcommand saves you the time it takes to retype the subcommand. To enter the
= subcommand, type an equal sign (=) and press the Return key.

Inserting and Deleting Lines
You can insert and delete lines with the INPUT, DELETE, RECOVER, and
REPLACE subcommands.

Inserting a Line
To insert a single line of data between existing lines enter the INPUT subcommand
followed by the line of data you want inserted. One blank must separate the
subcommand name and the data line.

For example,

input this is the line I want to insert

inserts a single line after the current line, without leaving edit mode. (To insert
more than one line, enter the INPUT subcommand with no operand to enter input
mode.)

To insert a blank line, enter the INPUT subcommand and press the spacebar at
least twice before pressing the Return key. A blank line is inserted after the current
line.

For example, a file contains the following lines:

TOF:

Some primal termite knocked on wood

And tasted it, and found it good,

And that is why your Cousin May,

Fell through the parlor floor today.

The current line is the last line displayed. To insert a title line, enter:

input "The Termite," by Ogden Nash

Now the file looks like this (TOP and TYPE 6 display the whole file):

TOF:

Some primal termite knocked on wood

And tasted it, and found it good,

And that is why your Cousin May,

Fell through the parlor floor today.

"The Termite," by Ogden Nash

58 z/VM: XEDIT User's Guide

 Editing on a Typewriter Terminal

To insert a blank line between the poem and the title line, enter:

up

(move the line pointer up one line)

input

(press the spacebar twice before pressing the Return key)

Now the file looks like this:

 TOF:

Some primal termite knocked on wood

And tasted it, and found it good,

And that is why your Cousin May,

Fell through the parlor floor today.

 _

"The Termite," by Ogden Nash

 Deleting Lines
The DELETE subcommand deletes one or more lines, beginning with the current
line.

To delete only the current line, enter:

delete

To delete more than one line, specify the number of lines in the operand; for
example,

delete 5

deletes five lines, including the current line.

To delete the rest of the file, enter:

delete �

To delete a number of lines without counting how many, you can use the form:

��─ ──DELete/string/ ─��

Lines are deleted, starting with the current line, up to (but not including) the line
containing the specified string.

For example, a file contains the following lines and the first line shown is the
current line:

a portable television

a transistor radio

 a frisbee

a loaf of bread

a jug of wine

 thou

delete/bread/

deletes all lines from the current line up to, but not including, the line containing
“bread”. All that remains is:

 Chapter 3. Using the Editor on a Typewriter Terminal 59

 Editing on a Typewriter Terminal

a loaf of bread

a jug of wine

 thou

Recovering Deleted Lines
If you delete one or more lines and change your mind, you can recover the lines
anytime during an editing session with the RECOVER subcommand:

��──RECover──n──��

where n represents the number of lines you wish to recover.

The last lines deleted are the first lines recovered. For instance, in our previous
example of deleting lines, if you enter:

recover 2

you get the radio and frisbee back:

a transistor radio

a frisbee

a loaf of bread

a jug of wine

thou

Recovered lines are inserted at the current line. If the lines belong elsewhere in
the file, you put them back with the MOVE subcommand, discussed later.

To recover all lines you deleted during an editing session, enter:

recover �

Replacing a Line
The REPLACE subcommand deletes the current line and replaces it with the text
you specify. Its format is:

��──Replace──text──��

If you enter the REPLACE subcommand with no text, the editor deletes the current
line and places you in input mode.

Moving and Copying Lines
You can move and copy lines with the MOVE, COPY, and LPREFIX
subcommands.

60 z/VM: XEDIT User's Guide

 Editing on a Typewriter Terminal

 MOVE Subcommand
The MOVE subcommand removes one or more lines, starting with the current line,
from their current line and inserts them elsewhere in the file. Its format is:

��──MOve──from──to──��

The first operand is the number of lines to move, starting with the current line. The
second operand tells the destination; moved lines are deleted from their original
location and inserted after the destination.

For example, to move the current line three lines down in the file, enter:

move 1 3

To move the current line and the two lines after it three lines down in the file, enter:

move 3 3

To move a line backward in the file, specify a minus (–) sign in front of the
destination operand. For example,

move 1 -3

moves the current line up two lines in the file.

To avoid counting lines, you can specify the destination operand as a character
string. For example,

move 1 /string/

moves the current line after the line containing the string.

To move a line backward in the file, specify a minus (–) sign before the string. For
example:

move 1 -/string/

In the following example, the top line is the current line:

filberts

almonds

cashews

chestnuts

pecans

walnuts

Either of the following subcommands moves the line containing “filberts” (the
current line) after the line containing “chestnuts”.

move 1 3 or move 1 /chestnuts/

The resulting file looks like this:

almonds

cashews

chestnuts

filberts

pecans

walnuts

 Chapter 3. Using the Editor on a Typewriter Terminal 61

 Editing on a Typewriter Terminal

 COPY Subcommand
The COPY subcommand duplicates one or more lines, starting with the current line,
and places them after the destination line; the original line(s) remain in place. The
format of COPY is:

��──COpy──from──to──��

 LPREFIX Subcommand
The LPREFIX subcommand simulates writing in the prefix area of the current line,
even though no prefix area is available on typewriter terminals. LPREFIX performs
some of the functions (such as moving or copying lines) that prefix subcommands
and macros provide on display terminals. For a description of the LPREFIX
subcommand, see z/VM: XEDIT Commands and Macros Reference.

Ending an Editing Session
You can end an editing session using FILE or QUIT. The SET AUTOSAVE
subcommand automatically saves your file for you while you are editing it.

 FILE Subcommand
New files are created and changes are made to existing files in virtual storage.
Virtual storage is temporary. To write a new or modified file to disk, SFS directory,
or byte file system for permanent storage, enter:

file

This writes the file disk or directory and returns control to CMS. You must use
FFILE to file an empty file, and it will only be saved if the file is located on a
directory in a file pool managed by a server at the z/VM release 1.1 or later level.

 QUIT Subcommand
The QUIT subcommand ends an editing session and leaves the permanent copy of
the file intact on the disk or directory. Its format is:

��──QUIT──��

Use QUIT instead of FILE if you edit a file just to examine, but not change, its
contents, or if you have made errors in changing a file and do not want them
recorded.

When you enter QUIT, a new file with no input is not written to disk or directory.
Otherwise, the editor gives you a warning message to prevent your inadvertently
using QUIT instead of FILE:

File has been changed; type QQUIT to quit anyway

If you really do not want to save the file, enter QQUIT (abbreviated QQ). To save
the changes, enter FILE.

62 z/VM: XEDIT User's Guide

 Editing on a Typewriter Terminal

SET AUTOSAVE Subcommand
Files on disks or SFS directories are not affected if the system malfunctions. But a
new file you are creating or the changes you are making to an existing file might be
lost if the system fails. You can minimize the risk of losing your data with the SET
AUTOSAVE subcommand. It causes your file to be written to disk or SFS directory
(or saved) after you have typed in or changed a certain number of lines. Its format
is:

��──SET──AUtosave──n──��

where n is the number of typed in or changed lines.

For example, to write the file to disk or SFS directory, or save it every time you
have changed 10 lines, enter:

set autosave 1�

The number of alterations you have made to your file since the last AUTOSAVE is
displayed in the alteration count (Alt=n) in the file identification line. When the
alteration count is equal to the AUTOSAVE setting, and the file contains at least
one record, the file is saved on disk or SFS directory and the alteration count is
reset to zero.

You can enter the SET AUTOSAVE subcommand any time during an editing
session, but it is a good idea to enter it right after you enter an XEDIT command to
create a new file or edit an existing file.

When a file is automatically saved, it is written into a new file whose file name is a
number and whose file type is AUTOSAVE. If the system malfunctions during an
editing session, you can recover all changes made up to the time of the last
automatic save. To do so, replace the original file with the AUTOSAVE file by
using the CMS COPYFILE command with the REPLACE option. To replace a BFS
file with the AUTOSAVE file, use the OPENVM PUTBFS command with the
REPLACE option. Then, erase the AUTOSAVE file and resume editing.

If you enter a SET AUTOSAVE subcommand and then enter a QUIT subcommand,
the new or revised file is not saved, but the AUTOSAVE file is still available from
disk or SFS directory.

Inserting Data from Another File
The GET subcommand inserts all or part of another file into the file you are editing
after the current line. (A file you get is not destroyed; a copy of that file is
inserted.)

Before entering the GET subcommand, make the current line the line after which
you want to insert data. To insert another file at the end of your file, use the
BOTTOM subcommand to make the last line current. To insert another file
somewhere in the middle of your file, use the UP or DOWN subcommand to make
the desired line current.

 Chapter 3. Using the Editor on a Typewriter Terminal 63

 Editing on a Typewriter Terminal

Inserting a Whole File
To insert all of another file into the file you are editing, use the format:

��──GET──filename──filetype──��

 or

��──GET──pathname──��

XEDIT determines whether the file ID entered is a CMS file (filename filetype) or a
BFS file (pathname) from the NAMETYPE setting. The default type of file ID is
CMS, but NAMETYPE BFS can be entered on the XEDIT command line to change
the file ID to a BFS file.

For example, to insert all of POEM2 at the end of POEM1, while you are editing
POEM1, enter:

bottom

(move the line pointer to the end of the file)

get poem2 script

(insert the whole file)

When the entire second file has been inserted, the editor displays the message:

EOF reached

Inserting Part of Another File
To insert part of another file, specify in the GET subcommand the line number of
the first line and the number of lines to insert. For example, the following GET
subcommand inserts the first 10 lines of a second file:

get file2 data 1 1�

If you do not know the line numbers, you can call out a second file without ending
your current editing session, put the lines you want to insert into a temporary file,
and insert that into your current file.

Note: In the byte file system, you cannot GET part of a BFS file.

Follow these steps:

1. In the first file, make the line after which you want to insert data the current
line. Then, without ending your current editing session, enter an XEDIT
subcommand to call out the second file.

2. Make the first line you want to insert the current line. Use the PUT
subcommand to store the lines you want to insert into a temporary holding
area. Its format is:

��──PUT──target──��

where target identifies the end of a group of lines to insert. You can specify a
target in various ways, described in Chapter 4, “Using Targets” on page 71.
Two ways are described here.

64 z/VM: XEDIT User's Guide

 Editing on a Typewriter Terminal

Starting with the current line, you can count the number of lines you want to
insert and specify this number as the target. For example, if a file contains:

a loaf of bread

a jug of wine

thou

a portable television

and the line containing “a loaf of bread” is current, the following subcommand
stores all four lines:

put 4

Or you can specify the target as a character string. The editor stores lines from
the current line up to, but not including, the line containing the string. For
example, the following subcommand stores the first three lines, but not the line
containing “a portable television”.

put/television/

3. Enter a QUIT subcommand to return to your original file.

 4. Then enter:

get

No operands are required. The lines stored with the PUT subcommand are
inserted. The last line inserted becomes the new current line.

The following example illustrates these steps. A file, called DESSERT
COOKBOOK, contains a recipe for cream puffs. Recipes for sauces are in a
separate file, SAUCES COOKBOOK. To insert the recipe for chocolate sauce after
the recipe for cream puffs:

1. XEDIT DESSERT COOKBOOK and make the current line the line after which
you want to insert the sauce recipe (the blank line between HEAVY CREAM
and ALMOND COOKIES):

CREAM PUFFS WITH CHOCOLATE SAUCE

_

_ 2 OUNCES BUTTER

_ 1/2 TEASPOON SUGAR

_ 1/2 CUP FLOUR

_ 1 PINCH OF SALT

_ 2 EGGS

_ 2 CUPS HEAVY CREAM, WHIPPED

_

ALMOND COOKIES

Then call out the second file, SAUCES COOKBOOK:

xedit sauces cookbook

2. Make the first line you want to insert (CHOCOLATE SAUCE) the current line.

CHOCOLATE SAUCE

_

_ 12 OUNCES SEMI-SWEET CHOCOLATE

_ 2 OUNCES UNSWEETENED CHOCOLATE

_ 1 CUP HEAVY CREAM

_ 2 OUNCES COGNAC

_

VINAIGRETTE SAUCE

_

_ 1/2 CUP OLIVE OIL

 Chapter 3. Using the Editor on a Typewriter Terminal 65

 Editing on a Typewriter Terminal

Enter a PUT subcommand:

put/VINAIGRETTE/ or put 7

3. Return to the DESSERT COOKBOOK file:

quit

The original file is now being edited.

4. To insert the lines stored that were stored, enter:

get

The resulting file looks like this:

CREAM PUFFS WITH CHOCOLATE SAUCE

_

_ 2 OUNCES BUTTER

_ 1/2 TEASPOON SUGAR

_ 1/2 CUP FLOUR

_ 1 PINCH OF SALT

_ 2 EGGS

_ 2 CUPS HEAVY CREAM, WHIPPED

_

CHOCOLATE SAUCE

_

_ 12 OUNCES SEMI-SWEET CHOCOLATE

_ 2 OUNCES UNSWEETENED CHOCOLATE

_ 1 CUP HEAVY CREAM

_ 2 OUNCES COGNAC

_

ALMOND COOKIES

Using Special Characters
The SET IMAGE subcommand lets you use special characters.

SET IMAGE Subcommand
The SET IMAGE subcommand controls how special characters entered on an input
line are represented in a file. SET IMAGE affects these special characters:

� Tab characters (X'05')
� Backspace characters (X'16')

The format of the SET IMAGE subcommand is:

��──SET──IMage─ ──┬ ┬─ON──── ─��
 ├ ┤─OFF───
 └ ┘─Canon─

(SET IMAGE ON is the initial setting for all file types except SCRIPT, MACLIB,
MODULE, and TEXT. SET IMAGE CANON is the initial setting for SCRIPT files.)

66 z/VM: XEDIT User's Guide

 Editing on a Typewriter Terminal

 Tab Characters
You set physical tab settings manually on the typewriter. Logical tab settings
indicate the column positions where fields within a record begin. The SET TABS
subcommand defines them. Its format is:

 ┌ ┐─────
��──SET──TABS─ ───

�
┴─n─ ─��

where n represents the column numbers for the logical tab settings.

The SET IMAGE setting determines how the data is entered in the file when you
press the TAB key. With SET IMAGE ON, the editor replaces tab characters with
blanks, from the column where you pressed the TAB key, to the last column before
the next logical tab setting. The next character you enter after the tab becomes the
first character of the next field. For example, if you enter:

set tabs 1 15

and then enter a line beginning with a tab character, the first data character after
the tab is written into the file in column 15, regardless of the physical tab stop on
the terminal.

With SET IMAGE OFF in effect, the editor inserts a tab character in the record, just
as it inserts any other data character. It inserts no blanks.

To insert a tab character (X'05') into a record if SET IMAGE ON is in effect, enter
SET IMAGE OFF before entering the line. Then use the Tab key as a character
key; pressing the Tab key inserts a tab character in a line.

 Setting Tabs
When you create a file, default logical tab settings are in effect, so you do not need
to set tabs. To display the default tab settings, enter:

query tabs

To change the default tab settings, you can use the SET TABS subcommand.
Then, regardless of the physical tab stops set up on your terminal, pressing the
Tab key with SET IMAGE ON in effect spaces the data you enter to the columns
you defined.

Note: If you enter one line with the INPUT subcommand and SET IMAGE ON is
in effect, the line is placed in the first tab column defined by the SET TABS
subcommand. For example, if you enter:

set tabs 5 1� 15 2�

and then enter an input line:

input This is the input line

columns 1, 2, 3, and 4 contain blanks; the text begins in column 5.

Therefore, make sure the first number specified in the SET TABS subcommand is
the column where you want the data to begin.

 Chapter 3. Using the Editor on a Typewriter Terminal 67

 Editing on a Typewriter Terminal

 Backspace Characters
If you use backspaces and underscores in your file, you should enter SET IMAGE
OFF or SET IMAGE CANON.

SET IMAGE OFF means backspace characters (and tab characters) are left as
they are entered.

SET IMAGE CANON means that regardless of how the characters are typed in
(characters, backspaces, underscores), the editor orders the characters in the file
as: character — backspace — underscore, character — backspace — underscore,
and so forth. For example, if you want an input line to look like this:

ABC

You could enter it as:

ABC, 3 backspaces, 3 underscores

or

3 underscores, 3 backspaces, ABC

A typewriter types out the line in the following order:

A, backspace, underscore

B, backspace, underscore

C, backspace, underscore

which results in:

ABC

To modify a line that has backspaces without typing all the characters again,
change all the backspaces to some other character with the ALTER subcommand.
The following sequence shows how to delete all the backspace characters in a line:

AAAAA

alter 16 + 1 �

(alter all occurrences of X'16' to + in this line)

 +A +A +A +A +A

change/ +// 1 �

(change all occurrences of _+ to null in this line)

AAAAA

Disconnect Mode Restrictions
The following is a list of some of the XEDIT subcommands, prefix subcommands,
or macros not supported in disconnect mode.

68 z/VM: XEDIT User's Guide

 Editing on a Typewriter Terminal

Name Type

BAckward Subcommand

CURsor Subcommand

FOrward Subcommand

POWerinp Subcommand

REFRESH Subcommand

SOS Subcommand

SI Prefix macro

MODify Macro

RGTLEFT Macro

SCHANGE Macro

SI Macro

SPLTJOIN Macro

Summary of XEDIT Subset
This table summarizes the subcommands in this chapter. Minimum abbreviations
of subcommands are in uppercase letters.

Table 4 (Page 1 of 2). XEDIT Subcommand Summary

Function Subcommand

To create or edit a file Xedit

To enter data Input

To display file lines Type

To move the line pointer Down Up TOP Bottom

To move the column pointer CLocate CFirst

To locate data CLocate

To make changes to the file Change CInsert CDelete CAppend

To recover deleted data RECover

To delete lines DELete

To replace a line Replace

To move lines MOve

To copy lines COpy

To repeat a subcommand =

To control special characters SET IMage

To define logical tabs SET TABS

To display tab settings Query TABS

To display the logical record length Query LRecl

To alter special character ALter

To end an editing session without saving
the changes

QUIT

 Chapter 3. Using the Editor on a Typewriter Terminal 69

 Editing on a Typewriter Terminal

Table 4 (Page 2 of 2). XEDIT Subcommand Summary

Function Subcommand

To save automatically after changing a
specified number of lines

SET AUtosave

To save the changed file when you have
finished working on it

FILE

To store lines in temporary file for
subsequent embed in another

PUT

To embed a complete or a partial copy of
one file in another

GET

To simulate writing in the prefix area of
the current line

LPrefix

70 z/VM: XEDIT User's Guide

 Using Targets

 Chapter 4. Using Targets

The ability to locate a line from a target is one of the editor’s most versatile
functions.

What Is a Target?
Very simply, a target is a way you identify a line to the editor. You use targets to
identify lines for two basic reasons:

� To change which line is the current line
� To define the operating range of a subcommand’s execution

You can enter a target in the following ways:

 � By itself
� As the operand of the LOCATE subcommand
� Before any XEDIT subcommand
� As the operand(s) in many other XEDIT subcommands

When you enter a target either by itself or as the operand of a LOCATE
subcommand, the editor makes the target line the new current line. Entered before
a subcommand, a target causes the editor to make the target line the new current
line before it executes the subcommand.

When you enter a target as the operand of various other XEDIT subcommands, it
defines the range of that subcommand’s execution. Most XEDIT subcommands
begin their operation with the current line; the target operand specifies where the
operation is to end.

The following XEDIT subcommands have target operands:

See z/VM: XEDIT Commands and Macros Reference for a complete description of
the subcommand formats.

You can express a target in the following ways:

� An absolute line number
� A relative displacement from the current line
� A line name
� A simple string expression
� A complex string expression

You can use one or all of the above kinds of targets during an editing session; you
can even use different kinds of target operands in the same subcommand.

ALL EXPAND REPEAT
ALTER EXTRACT SET RANGE
CHANGE HEXTYPE SET SELECT
COMPRESS LOWERCAS SHIFT
COPY MERGE SORT
COUNT MOVE STACK
DELETE PUT TYPE
DUPLICAT PUTD UPPERCAS

 Copyright IBM Corp. 1990, 2005 71

 Using Targets

Using a Target to Change Which Line Is Current
Look at Figure 21 on page 73. The purpose of Figure 21 is to show you there are
various ways to identify any given line to the editor. When entered on the
command line, any of the following targets would change the current line to the one
shown in the bottom screen. (The current line is the line above the scale.) All the
following targets are equivalent:

====> :11

(absolute line number)

====> +6

(relative displacement from the current line)

====> .CLAUDE

(line name previously assigned by SET POINT)

====> /egg/

 (string)

The editor begins searching for the target with the line following the current line; if
the target line is located, it becomes the new current line.

Notice in the file identification line at the top of the screen, the “Line=” indicator
shows the current line has changed from line 5 (top screen) to line 11 (bottom
screen).

72 z/VM: XEDIT User's Guide

 Using Targets

� �
 TARGET1 SCRIPT A1 V 132 Trunc=132 Size=14 Line=5 Col=1 Alt=�

����� � � � Top of File � � �

����1 THE PHOENIX

����2

����3 Deep in the study

����4 Of eugenics

����5 We find that fabled

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

����6 Fowl, the Phoenix.

����7 The wisest bird

����8 As ever was,

����9 Rejecting other

���1� Mas and Pas,

���11 It lays one egg,

���12 Not ten or twelve,

���13 And when it's hatched,

���14 Out pops itself.

====> /egg/

X E D I T 1 File

� �

� �
 TARGET1 SCRIPT A1 V 132 Trunc=132 Size=14 Line=11 Col=1 Alt=�

����2

����3 Deep in the study

����4 Of eugenics

����5 We find that fabled

����6 Fowl, the Phoenix.

����7 The wisest bird

����8 As ever was,

����9 Rejecting other

���1� Mas and Pas,

���11 It lays one egg,

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

���12 Not ten or twelve,

���13 And when it's hatched,

���14 Out pops itself.

���15 � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 21. Using a Target to Move the Line Pointer

A Target as the Operand of a LOCATE Subcommand
You can specify the preceding targets as operands of the LOCATE subcommand
like this:

====> locate :11

====> locate +6

====> locate .CLAUDE

====> locate /egg/

You do not need to type LOCATE unless you want to. A target specified by itself
implies the LOCATE subcommand; the name LOCATE is optional.

 Chapter 4. Using Targets 73

 Using Targets

A Target Preceding a Subcommand
You can enter a target in the command line before any XEDIT subcommand. The
editor first makes the target line the new current line, and then executes the
subcommand. For example:

====> :1� add 5

The editor makes line 10 the new current line and then adds five lines to the file.

This method is equivalent to entering a target, pressing Enter, entering the
subcommand, and pressing Enter. Typing both the target and the subcommand in
the command line and pressing Enter only once saves you time.

Using a Target as a Subcommand Operand
When a subcommand format shows you can specify an operand as a target, the
target usually tells the editor how many lines the subcommand is to execute upon;
in other words, it defines the range of that subcommand’s operation. For example,
the format of the UPPERCAS subcommand is:

��──UPPercas──target──��

This format means, “starting with the current line, translate all lowercase characters
to uppercase, up to, but not including, the target line.” The target line itself is not
translated. After execution, the last line translated becomes the new current line.

Figure 22 on page 75 is a before-and-after example of an UPPERCAS
subcommand. When entered on the command line, any of the following
subcommands would effect the translation shown in the bottom screen:

====> uppercas :14

(absolute line number)

====> uppercas +4

(relative displacement from current line)

====> uppercas .STOP

(line name previously assigned)

====> uppercas /son/

 (string)

74 z/VM: XEDIT User's Guide

 Using Targets

� �
 TARGET2 SCRIPT A1 V 132 Trunc=132 Size=17 Line=1� Col=1 Alt=�

����1 WINTER COMPLAINT

����2 Now when I have a cold

����3 I am careful with my cold,

����4 I consult my physician

����5 And I do as I am told.

����6 I muffle up my torso

����7 In woolly woolly garb,

����8 And I quaff great flagons

����9 Of sodium bicarb.

���1� I munch on aspirin,

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

���11 I lunch on water,

���12 And I wouldn't dream of osculating

���13 Anybody's daughter,

���14 And to anybody's son

���15 I wouldn't say howdy,

���16 For I am a sufferer

���17 Magna cum laude.

���18 � � � End of File � � �

====> UPPERCAS/son/

X E D I T 1 File

� �

� �
 TARGET2 SCRIPT A1 V 132 Trunc=132 Size=17 Line=13 Col=1 Alt=1

����4 I consult my physician

����5 And I do as I am told.

����6 I muffle up my torso

����7 In woolly woolly garb,

����8 And I quaff great flagons

����9 Of sodium bicarb.

���1� I MUNCH ON ASPIRIN,

���11 I LUNCH ON WATER,

���12 AND I WOULDN'T DREAM OF OSCULATING

���13 ANYBODY'S DAUGHTER,

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

���14 And to anybody's son

���15 I wouldn't say howdy,

���16 For I am a sufferer

���17 Magna cum laude.

���18 � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 22. Using a Target as a Subcommand Operand

 Chapter 4. Using Targets 75

 Using Targets

Types of Targets
Let us take a closer look at each of the ways to specify targets.

A Target as an Absolute Line Number
You can display line numbers in the prefix area by entering the following
subcommand:

====> set number on

An absolute line number is represented as a colon (:) followed by the line number,
for example, :10.

The following examples illustrate targets specified as absolute line numbers:

====> :5�

(make file line number 50 the new current line)

====> change /A/B/ :2�

(beginning with the current line, change A to B in every line up to, but not
including, line 20)

Figure 23 on page 77 is a before-and-after example of a COUNT subcommand
whose target operand is an absolute line number. The COUNT subcommand (top
screen) means, “beginning with the current line, count how many times the string
‘cone’ appears in all lines up to but not including line 14.” The string is counted
only if it appears in the file exactly the way it is specified in the subcommand (in
lowercase).

76 z/VM: XEDIT User's Guide

 Using Targets

When you press Enter (bottom screen), notice that the last line searched (line 13)
becomes the new current line, and the editor displays the message, 2 occurrences,
in the message line.

� �
 TARGET3 SCRIPT A1 V 132 Trunc=132 Size=16 Line=8 Col=1 Alt=�

����� � � � Top of File � � �

����1 TABLEAU AT TWILIGHT

����2

����3 I sit in the dusk, I am all alone.

����4 Enter a child and an ice cream cone.

����5 A parent is easily beguiled

����6 By sight of this coniferous child.

����7 The friendly embers warmer gleam,

����8 The cone begins to drip ice cream.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

����9 Cones are composed of many a vitamin.

���1� My lap is not the place to bitamin.

���11 Although my raiment is not chinchilla,

���12 I flinch to see it become vanilla...

���13 Exit child with remains of cone.

���14 I sit in the dusk. I am all alone,

���15 Muttering spells like an angry Druid,

���16 Alone, in the dusk, with the cleaning fluid.

���17 � � � End of File � � �

====> COUNT /cone/ :14

X E D I T 1 File

� �

� �
 TARGET3 SCRIPT A1 V 132 Trunc=132 Size=16 Line=13 Col=1 Alt=�

2 occurrences

����4 Enter a child and an ice cream cone.

����5 A parent is easily beguiled

����6 By sight of this coniferous child.

����7 The friendly embers warmer gleam,

����8 The cone begins to drip ice cream.

����9 Cones are composed of many a vitamin.

���1� My lap is not the place to bitamin.

���11 Although my raiment is not chinchilla,

���12 I flinch to see it become vanilla...

���13 Exit child with remains of cone.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

���14 I sit in the dusk. I am all alone,

���15 Muttering spells like an angry Druid,

���16 Alone, in the dusk, with the cleaning fluid.

���17 � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 23. A Target as an Absolute Line Number

A Target as a Relative Displacement from the Current Line
A relative displacement from the current line is an integer that means the target is a
number of lines, either forward or backward, from the current line. A plus or minus
sign preceding the number indicates a forward (+) or backward (–) displacement
from the current line. If the sign is omitted, a plus (+) is assumed.

A relative displacement can also be an asterisk (*), which means the Top of File
(–*) or End of File (+* or *) line. When you specify an asterisk as the target

 Chapter 4. Using Targets 77

 Using Targets

operand of a subcommand, the subcommand executes to the end (or top) of the
file.

Examples:

====> +3

The target is three logical lines down (toward the end of the file) from the
current line.

====> -5

The target is five logical lines up (toward the top of the file) from the current
line.

====> +�

The target is the null End of File (or End of Range) line.

====> -�

The target is the null Top of File (or Top of Range) line.

====> copy +3 :25

Copy three lines, starting with the current line, after line number 25.

In this example, two targets are specified. The first (+3) is a relative
displacement from the current line; the second is an absolute line number.

====> delete �

Delete all lines from the current line to the end of the file.

Figure 24 on page 79 is a before-and-after example of a target specified as a
relative displacement. The target typed in the command line, +9, means, “move
the current line nine logical lines forward, toward the end of the file.” Notice that
line numbers do not have to be displayed in the prefix area to use this kind of
target. However, the “Line=” indicator in the file identification area shows the old
(Line=10) and new (Line=19) numbers of the current line.

78 z/VM: XEDIT User's Guide

 Using Targets

� �
 TARGET4 SCRIPT A1 V 132 Trunc=132 Size=28 Line=1� Col=1 Alt=�

===== THE PANTHER

=====

===== THE PANTHER IS LIKE A LEOPARD,

===== EXCEPT IT HASN'T BEEN PEPPERED.

===== SHOULD YOU BEHOLD A PANTHER CROUCH,

===== PREPARE TO SAY OUCH.

===== BETTER YET, IF CALLED BY A PANTHER,

===== DON'T ANTHER.

=====

===== THE CANARY

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

=====

===== THE SONG OF CANARIES

===== NEVER VARIES.

===== AND WHEN THEY'RE MOULTING

===== THEY'RE PRETTY REVOLTING.

=====

===== THE GIRAFFE

=====

===== I BEG YOU, CHILDREN, DO NOT LAUGH

====> +9

X E D I T 1 File

� �

� �
 TARGET4 SCRIPT A1 V 132 Trunc=132 Size=28 Line=19 Col=1 Alt=�

===== THE CANARY

=====

===== THE SONG OF CANARIES

===== NEVER VARIES.

===== AND WHEN THEY'RE MOULTING

===== THEY'RE PRETTY REVOLTING.

=====

===== THE GIRAFFE

=====

===== I BEG YOU, CHILDREN, DO NOT LAUGH

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== WHEN YOU SURVEY THE TALL GIRAFFE.

===== IT'S HARDLY SPORTING TO ATTACK

===== A BEAST THAT CANNOT ANSWER BACK.

===== HE HAS A TRUMPET FOR A THROAT,

===== AND CANNOT BLOW A SINGLE NOTE.

===== IT ISN'T THAT HIS VOICE HE HOARDS;

===== HE HASN'T ANY VOCAL CORDS.

===== I WISH FOR HIM, AND FOR HIS WIFE,

===== A VOLUBLE GIRAFTER LIFE.

====>

X E D I T 1 File

� �

Figure 24. A Target as a Relative Displacement

A Target as a Line Name
You can assign any line in a file a name of one to eight characters preceded by a
period (.), for example, .PART2.

You can use either the SET POINT subcommand or the .xxxx prefix subcommand
to define a name for a line. The SET POINT subcommand defines a name of one
to eight characters, preceded by a period, for the current line. The .xxxx prefix
subcommand defines a name for any line; just enter a period followed by a one- to
four-character name in the prefix area of the line.

Assigning a name to a line makes it unnecessary for you to look up its line number
or determine its relative displacement. Although the absolute line number of any

 Chapter 4. Using Targets 79

 Using Targets

given line can change during an editing session as you add or delete lines from the
file, a name stays with a line for the entire editing session.

A line name is particularly useful if you plan to refer to a line many times during an
editing session. You need to assign the name only once; you can then reference
the line by its name at any time. It remains in effect only for the current editing
session. Remember to type the line name exactly as it was when you originally
assigned it to the line; the editor always pays attention to uppercase and lowercase
characters when looking for a line name.

Examples:

You can use the SET POINT subcommand to name a line:

====> set point .PART2

(assign the name .PART2 to the current line)

====> top

(move the line pointer to the Top of File line)

====> change /A/B/ .PART2

(change A to B in every line, starting with the current line (in this case, the Top
of File line) up to but not including, the line named .PART2)

You can also use the .xxxx prefix subcommand to name a line: type a name
preceded by a period in the prefix area of any line on the screen:

===== data

===== data

===== data

.STOP This is the line I want to name.

===== data

You can name any line on the screen with the .xxxx prefix subcommand; the line
does not have to be the current line, as it does with the SET POINT subcommand.
After you press Enter, the assigned name disappears from the prefix area and is
replaced by equals signs or line numbers (depending on whether SET NUMBER
OFF or SET NUMBER ON is in effect). Then, you can refer to the line by using its
assigned name.

To use lines that have been already named:

====> .STOP

(make the line named .STOP the new current line)

====> move 1 .STOP

(move the current line after the line named .STOP)

Note: After a name is assigned to a line, you must keep track of it. You can enter
the subcommand QUERY POINT to display the name(s) of the current line, or you
can use QUERY POINT * to display all names that have been defined during the
editing session.

Figure 25 on page 81 is a before-and-after example of a DELETE subcommand
that has its target operand specified as a line name. The line that contains THE
PARSNIP was previously named .STOP. The subcommand typed in the command

80 z/VM: XEDIT User's Guide

 Using Targets

line means, “beginning with the current line, delete lines up to but not including the
line that has been assigned the name .STOP.”

� �
 TARGET5 SCRIPT A1 V 132 Trunc=132 Size=13 Line=1 Col=1 Alt=�

===== � � � Top of File � � �

===== CELERY

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

=====

===== CELERY, RAW,

===== DEVELOPS THE JAW,

===== BUT CELERY, STEWED,

===== IS MORE QUIETLY CHEWED.

=====

===== THE PARSNIP

=====

===== THE PARSNIP, CHILDREN, I REPEAT,

====> DELETE .STOP

X E D I T 1 File

� �

� �
 TARGET5 SCRIPT A1 V 132 Trunc=132 Size=6 Line=1 Col=1 Alt=1

7 line(s) deleted

===== � � � Top of File � � �

===== THE PARSNIP

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

=====

===== THE PARSNIP, CHILDREN, I REPEAT,

===== IS SIMPLY AN ANEMIC BEET.

===== SOME PEOPLE CALL THE PARSNIP EDIBLE;

===== MYSELF, I FIND THIS CLAIM INCREDIBLE.

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 25. A Target as a Line Name

A Target as a Simple String Expression
You can specify a target as one or more characters, that is, a string, contained in a
file line. The editor looks for the string, making the first line that contains it the
target line.

If you specify the string target alone or as the operand of a LOCATE subcommand,
the line containing the string becomes the new current line. If the string target is an
operand of one of the other XEDIT subcommands, the line that contains the string
determines the range of the subcommand’s execution.

 Chapter 4. Using Targets 81

 Using Targets

The string must be enclosed in delimiters, which can be any character that does
not appear in the string itself. However, if you use one of the following special
characters as a delimiter, you must also specify a search direction (+ or –): plus
(+), minus (–), not (¬), or period (.). The search direction is explained under
“Specifying a Search Direction” on page 82.

For example, the following is a string target, entered alone on the command line:

====> /whatever/

This means, “beginning with the line following the current line, search for the string
‘whatever’ and make the line that contains it the new current line.”

The following is an example of a string target used as the operand of a
subcommand:

====> delete /whatever/

This means, “delete all lines from the current line up to, but not including, the line
that contains ‘whatever’.”

The simplest way to specify a string target, as shown previously, is one or more
characters surrounded by delimiters. You can also:

� Determine the direction of the search
� Search for a line that does not contain a given string
� Search for any of several strings

Specifying a Search Direction
Type a plus (+) or minus (–) sign before a string target to tell the editor to search
for a string in either a forward or backward direction from the current line.

A plus sign in front of a string target means the search for the string starts at the
line following the current line in a forward direction, toward the end of the file. If the
string is found, the line that contains it becomes the new current line. If a sign is
omitted, a plus is assumed. The following targets are equivalent:

====> /whatever/ and ====> +/whatever/

You can also specify searching backward in the file by typing a minus sign before
the string target. For example:

====> -/whatever/

means, “search backward in the file, starting with the line preceding the current line,
and make the line containing the string the new current line.”

Examples:

====> delete /rosebud/

(delete lines beginning with the current line, up to but not including the line
containing “rosebud”)

====> copy /daisy/ -/petunia/

(copy lines starting with the current line, up to but not including, the line
containing “daisy”, and insert them after the line containing “petunia”, which is
located in a backward direction from the current line)

====> put /Chapter2/

82 z/VM: XEDIT User's Guide

 Using Targets

(put lines from the current line, up to but not including, the line that contains
“Chapter2”)

Using a NOT Symbol (¬)
You can precede any string target with a NOT symbol (¬), which means the target
is a line that does not . contain the specified string. For example:

====> ¬/Part Number/

(beginning with the line following the current line, locate a line that does not
contain “Part Number” and make it the new current line)

====> move 1 ¬/Part Number/

(move the current line after the first line that does not contain “Part Number”)

Using an OR Symbol (|)
A string target can comprise multiple strings, separated by an OR symbol, each
enclosed in delimiters. The editor searches the file one line at a time. The first line
that contains one of the specified strings becomes the current line. For example:

If a file contains the following lines:

===== apples

===== peaches

===== plums

===== pears

===== oranges

the subcommand:

====> locate /oranges/|/pears/|/peaches/

makes the following line current:

===== peaches

Using an AND Symbol (&)
You can use an AND symbol in the same way you use the OR symbol. The editor
searches the file one line at a time and the first line that contains all the strings
specified becomes the current line. For example:

If a file contains the following lines:

===== Truffles, Leg of Lamb, Chocolate Mousse

===== Turkey eggs, Leg of Lamb, Savarin

===== Escargot, Leg of Lamb, Bombe

the following subcommand:

====> locate /Leg of Lamb/&/Bombe/

makes the following line current:

===== Escargot, Leg of Lamb, Bombe

 Chapter 4. Using Targets 83

 Using Targets

A Summary of Simple String Targets
You have seen how to specify a target as a single string, enclosed in delimiters.
You have also seen how a plus or minus sign, a NOT symbol, an OR symbol, and
an AND symbol can further define a string.

You can also combine all these features to define a single target; that is, a plus or
minus sign and a NOT symbol can precede a single string, enclosed in delimiters.
OR or AND symbols can separate two or more strings.

Furthermore, if the subcommand SET HEX ON is in effect, you can specify a string
in hexadecimal notation, for example, /X'C3D4E2'/.

The following is the format of a simple string expression:

┌ ┐─ + ─
��─ ──┼ ┼───── ──┬ ┬─── ─── ───/string/──(1) ──┬ ┬────────────────────────────── ────��

└ ┘─ – ─ └ ┘─¬─ │ │┌ ┐────────────────────────────
 └ ┘───

�
┴──┬ ┬─|─ ──┬ ┬─── ──/string/──(1)

└ ┘─&─ └ ┘─¬─

Note:
1 The final delimiter (/) is optional after the last string. Leading or trailing blanks

are considered part of string.

+ or −
The search direction is toward the end of the file (+) or toward the top of the file
(–). If the sign is omitted, a plus (+) is assumed.

¬ NOT symbol (Locate something that is not the specified string.)

string
Character (or hexadecimal) string. The trailing delimiter may be necessary in
certain circumstances. For example, if the first string has trailing blanks, use
the trailing delimiter to indicate where the string ends.

& AND symbol (ampersand) (Locate the line containing all the strings separated
by an &.)

| OR symbol (vertical bar) (Locate the line containing any of the strings,
separated by OR symbols, starting with the first string specified.)

Examples:

====> /horse/

(searches downward in the file, beginning after the current line, for the first line
that contains “horse” and makes it the current line)

====> ¬/house/

(searches downward in the file for the first line that does not contain “house”
and makes it the current line)

====> /horse/ & /house/ | /hay/

(searches downward in the file for the first line that contains both “horse” and
“house” or that contains “hay,” whichever occurs first)

84 z/VM: XEDIT User's Guide

 Using Targets

====> /horse/|¬/house/

(searches downward in the file for the first line that contains “horse” or does not
contain “house”)

====> -/X'C1'/|/X'C2'/

(searches upward for the first line containing either or both of the strings
specified here in hexadecimal (if SET HEX ON is in effect))

If SET HEX ON is in effect, the editor locates a line containing “A” or “B.” If
SET HEX OFF is in effect, the editor locates a line containing “X'C1'” or
“X'C2'.”

Figure 26 on page 86 is a before-and-after example of a target specified as a
simple string expression. The target typed in the command line means, “beginning
with the line following the current line, search for a line that either does not contain
‘Experience’ or for a line that does contain ‘experience’, and make it the new
current line.”

A Target as a Complex String Expression
A complex string expression has the same format as a simple string expression.
You can express a string as a complex string by associating it with one or more of
the following SET subcommand options:

 SET ARBCHAR
lets you specify only the beginning and end of a string, using an arbitrary
character to represent all characters in the middle.

 SET CASE
lets you specify whether the difference between uppercase and lowercase
is to be significant in locating a string target.

 SET SPAN
lets you specify if a string target must be included in one file line or if it can
span a specified number of lines.

 SET VARBLANK
lets you control whether the number of blank characters between two words
is significant in a target search.

You can use one or more of these options to suit your individual text processing
needs. The editor assigns each of the options an initial setting. You can alter the
setting one or more times during an editing session by issuing the appropriate SET
subcommand. (See z/VM: XEDIT Commands and Macros Reference for a
complete description of these SET subcommand options.)

Using a Target with SET ARBCHAR
When SET ARBCHAR ON is in effect, you can use a dollar sign ($), which is the
default arbitrary character, to represent all characters between the beginning and
end of a string target.

Example:

====> /air$plane/

The beginning of the string is “air”; the end of the string is “plane.” The dollar sign
is the arbitrary character and represents any characters between “air” and “plane.”

 Chapter 4. Using Targets 85

 Using Targets

This string target causes the editor to locate either of the following file lines, and
makes current whichever line comes first:

===== The airplane landed.

===== Cold air surrounded the plane.

� �
 TARGET6 SCRIPT A1 V 132 Trunc=132 Size=8 Line=� Col=1 Alt=�

===== � � � Top of File � � �

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== Experience is a futile teacher,

===== Experience is a prosy preacher,

===== Experience is a fruit tree fruitless,

===== Experience is a shoe-tree bootless...

===== For sterile wearience and drearience,

===== Depend, my boy, upon experience.

===== I'd trade my lake of experience

===== For just one drop of common sense.

===== � � � End of File � � �

====> ¬/Experience/|/experience/

X E D I T 1 File

� �

� �
 TARGET6 SCRIPT A1 V 132 Trunc=132 Size=8 Line=5 Col=1 Alt=�

===== � � � Top of File � � �

===== Experience is a futile teacher,

===== Experience is a prosy preacher,

===== Experience is a fruit tree fruitless,

===== Experience is a shoe-tree bootless...

===== For sterile wearience and drearience,

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== Depend, my boy, upon experience.

===== I'd trade my lake of experience

===== For just one drop of common sense.

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 26. A Target as a Simple String Expression

86 z/VM: XEDIT User's Guide

 Using Targets

Using a Target with SET CASE
You can specify whether the editor respects or ignores the difference between
uppercase and lowercase representations of alphabetic letters by using the SET
CASE subcommand.

The following subcommand tells the editor uppercase and lowercase
representations of the same letter do not match:

====> set case mixed respect

For example, a file contains the following line:

===== The Text Editor

The following string target does not locate that line:

====> /the text editor/

On the other hand, the following subcommand tells the editor to ignore the
difference between uppercase and lowercase:

====> set case mixed ignore

With this setup, in the preceding example, the line would be located.

Using a Target with SET SPAN
Usually, a string must be included in a single file line to be located. You can use
the SET SPAN subcommand to specify a string target can span a specified number
of lines and still be located. The line that contains the beginning of the string
becomes the new current line.

In a text file, like a SCRIPT file, a blank separates each file line. The following
subcommand tells the editor a string target can span two lines, separated from
each other by a blank:

====> set span on blank 2

The string target:

====> /twigs to probe/

would locate in the file:

===== Woodpecker finches of the Galapagos Islands use twigs

===== to probe holes in tree trunks for edible insects.

The string “twigs to probe” begins on one line and ends on the next.

Using a Target with SET VARBLANK
The SET VARBLANK subcommand controls whether the number of blank
characters between two words is significant in a target search.

SET VARBLANK ON means the number of blanks between two words can vary;
the number of intervening blanks specified in a string target does not have to be
equal to the number in the file.

 Chapter 4. Using Targets 87

 Using Targets

For example:

====> /the house/

would locate either of the following lines in the file:

===== the house

===== the house

If SET VARBLANK OFF is in effect (the initial setting), the number of blanks
between two words is significant in a target search. In the preceding example, only
the second line would be located.

Combining the SET Options
You can tailor the SET options, ARBCHAR, CASE, SPAN, and VARBLANK to meet
your particular text processing needs. For example, with SET ARBCHAR ON, SET
CASE MIXED IGNORE, SET SPAN ON BLANK 2, and SET VARBLANK ON, you
can:

� Specify only the beginning and end of a string target
� Locate a string whether it is in uppercase or lowercase
� Allow the string target to locate a string that starts on one line and ends on

another
� Disregard the number of intervening blanks between two words

Figure 27 on page 89 is a before-and-after example of using a target specified as
a complex string expression.

The following subcommands were entered:

====> set arbchar on $

====> set case mixed ignore

====> set span on blank 2

The string target typed in the command line locates the line shown in the bottom
screen. The ARBCHAR option lets the beginning and end be specified; the CASE
option lets the string be specified in lowercase even though it appears in the file in
both uppercase and lowercase; the SPAN option lets the beginning and end of the
string be located on two consecutive lines.

88 z/VM: XEDIT User's Guide

 Using Targets

� �
 TARGET7 SCRIPT A1 V 132 Trunc=132 Size=19 Line=1� Col=1 Alt=�

===== MORE ABOUT PEOPLE

=====

===== When people aren't asking questions

===== They're making suggestions

===== And when they're not doing one of those

===== They're either looking over your shoulder or stepping on your toes

===== And then as if that weren't enough to annoy you

===== They employ you.

===== Anybody at leisure

===== Incurs everybody's displeasure.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== It seems to be very irking

===== To people at work to see other people not working.

===== So they tell you that work is wonderful medicine,

===== Just look at Firestone and Ford and Edison,

===== And they lecture you till they're out of breath or something

===== And then if you don't succumb they starve you to death or something.

===== All of which results in a nasty quirk:

===== That if you don't want to work you have to work to earn enough money

===== so that you won't have to work.

====> +/fire$breath/

X E D I T 1 File

� �

� �
 TARGET7 SCRIPT A1 V 132 Trunc=132 Size=19 Line=14 Col=1 Alt=�

===== And when they're not doing one of those

===== They're either looking over your shoulder or stepping on your toes

===== And then as if that weren't enough to annoy you

===== They employ you.

===== Anybody at leisure

===== Incurs everybody's displeasure.

===== It seems to be very irking

===== To people at work to see other people not working.

===== So they tell you that work is wonderful medicine,

===== Just look at Firestone and Ford and Edison,

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== And they lecture you till they're out of breath or something

===== And then if you don't succumb they starve you to death or something.

===== All of which results in a nasty quirk:

===== That if you don't want to work you have to work to earn enough money

===== so that you won't have to work.

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 27. A Target as a Complex String Expression

 Using Column-Targets
The targets discussed so far affect line pointer movement–that is, if the editor
locates the target, the line pointer moves. However, the column pointer does not
move. Furthermore, if a target is expressed as a string, only the first occurrence of
the string is located in a line.

The CLOCATE subcommand operates on a specialized operand called a
column-target. This subcommand can locate all occurrences of a string throughout
a file and move the column pointer. The format of the CLOCATE subcommand is:

 Chapter 4. Using Targets 89

 Using Targets

��──CLocate──column_target──��

where the column_target can be an absolute column number, a relative
displacement from the current column, or a string expression.

The following examples show the various ways to express a column-target. Notice
how the column pointer moves after each subcommand is executed.

Current Line:

===== John Keats studied medicine and practiced as an apothecary.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

====> clocate :6

(absolute column number)

===== John Keats studied medicine and practiced as an apothecary.

 <...+|...1....+....2....+....3....+....4....+....5....+....6....+....7...

Current Line:

===== James Joyce was a school teacher in Dublin.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

====> clocate +6

(relative column number)

===== James Joyce was a school teacher in Dublin.

 <...+.|..1....+....2....+....3....+....4....+....5....+....6....+....7...

Current Line:

===== Herman Melville worked as a customs inspector in N.Y.C.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

====> clocate /customs/

===== Herman Melville worked as a customs inspector in N.Y.C.

 <...+....1....+....2....+...|3....+....4....+....5....+....6....+....7...

Current Line:

===== Charles Dickens served as a law clerk and was a reporter.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

====> clocate /reporter/|/clerk/

(search for “reporter,” even if
“clerk” occurs first; if “reporter” is not found, then search for “clerk.”)

===== Charles Dickens served as a law clerk and was a reporter.

 <...+....1....+....2....+....3....+....4....+...|5....+....6....+....7...

90 z/VM: XEDIT User's Guide

 Using Targets

The CLOCATE subcommand scans the file, starting with the column following (or
preceding, depending on the search direction) the column pointer in the current
line, for the specified column target, and moves the column pointer to the target, if
it is located. In addition, the line pointer is moved (if necessary), so CLOCATE can
successively locate all occurrences of a string in a file.

CLOCATE is also necessary because various subcommands perform their
operations based on the position of the column pointer. Use the CLOCATE
subcommand first to position the column pointer; then you can use another
subcommand that operates based on the position of the column pointer.

The following is a list of all subcommands that operate based on the position of the
column pointer.

 CAPPEND
Appends text to the end of the current line, and moves the column pointer
under the first character of the appended text.

 CDELETE
Deletes one or more characters from the current line, starting at the column
pointer, up to a column-target.

 CFIRST
Moves the column pointer to the beginning of the line.

 CINSERT
Inserts character(s) in a line, starting at the column pointer.

 CLAST
Moves the column pointer to the end of the line.

 CLOCATE
Moves the column pointer to a specified column-target.

 COVERLAY
Selectively replaces characters in corresponding positions in the current
line, starting at the column pointer; blanks in the operand do not overlay
characters in the file line.

 CREPLACE
Replaces characters in the current line, starting at the column pointer;
blanks can replace characters.

These subcommands are discussed in detail in z/VM: XEDIT Commands and
Macros Reference. Column-targets are discussed in that book in the CLOCATE
subcommand section.

The following examples illustrate how to use the CLOCATE and CDELETE
subcommands to delete a word:

 Chapter 4. Using Targets 91

 Using Targets

===== If anything can go wrong, it will.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

====> clocate / wrong/

(move column pointer under first character of string to be deleted)

===== If anything can go wrong, it will.

 <...+....1....+...|2....+....3....+....4....+....5....+....6....+....7...

====> cdelete /,/

(delete from column pointer up to, but not including, the comma)

===== If anything can go, it will.

 <...+....1....+...|2....+....3....+....4....+....5....+....6....+....7...

92 z/VM: XEDIT User's Guide

 Editing Multiple Files

Chapter 5. Editing Multiple Files

When you enter the CMS command XEDIT, a copy of the specified file is brought
into virtual storage, where it remains until you enter a FILE or QUIT subcommand.
In other words, the XEDIT command brings one file at a time into storage. By
entering the XEDIT subcommand during an editing session, you can bring more
than one file into virtual storage at a time.

The XEDIT Subcommand
The formats of the XEDIT subcommand and the XEDIT command are similar.
Following is an example:

 ┌ ┐──(1) ───
��──Xedit─ ──┼ ┼─── ─────────��
 │ │┌ ┐─=──�─────────── ┌ ┐ ─(───(2) ────────────────────
 └ ┘─── ─ ──┬ ┬ ──┬ ┬─fn─ ──┼ ┼──────────────── ──┼ ┼─────────────────────────
 │ │└ ┘─=── │ │┌ ┐─�── └ ┘─(───(2) ─┤ Options ├─ ──┬ ┬───
 │ │└ ┘ ──┬ ┬─ft─ ──┼ ┼──── └ ┘─)─
 │ │└ ┘─=── ├ ┤─fm─
 │ │└ ┘─=──
 ├ ┤─pathname───────────────────
 └ ┘─=──────────────────────────

Notes:
1 If operands are not specified, the next file in the ring is chosen.
2 See the XEDIT command in z/VM: XEDIT Commands and Macros Reference for the Options,

Update Mode Options, and appropriate defaults.

For a complete description of the XEDIT subcommand operands, see z/VM: XEDIT
Commands and Macros Reference.

Creating a Ring of Files in Storage
Multiple files are kept in virtual storage in a ring. Each time you enter an XEDIT
subcommand with a new file ID, a file is added to the ring and becomes the current
file, the file that is displayed.

A file remains in the ring until you enter a FILE or QUIT subcommand for that file;
then the preceding file in the ring is displayed. Only your virtual storage size limits
the number of files you can edit simultaneously.

Figure 28 on page 94 illustrates a ring of files in storage.

 Copyright IBM Corp. 1990, 2005 93

 Editing Multiple Files

F I L E A

F I L E B

F I L E C

Figure 28. A Ring of Files in Storage

Note: The ring of files can be a mixture of CMS and BFS files.

By entering the following subcommand, you can display the number of files in the
ring and the file identification line of each file:

====> query ring

Editing the Files in the Ring
The order in which you can edit the files in the ring depends on how you specify
the XEDIT subcommand:

� If you enter the XEDIT subcommand without operands, the next file in the ring
appears on the screen. (See Part 1 of Figure 29 on page 95.) Therefore,
entering a series of XEDIT subcommands without operands lets you switch
from the first file to the second, the second to the third, and so forth, all the
way around the ring and back to the first file.

� You can alter this sequence by entering the XEDIT subcommand with the file
ID of a file in the ring. The specified file becomes the current file and appears
on the screen, regardless of its relative position in the ring. (See Part 2 of
Figure 29 on page 95.)

� Entering the XEDIT subcommand and specifying the file ID of a new or existing
file that is not already in the ring adds that file to the ring just after the current
file and displays it. (See Part 3 of Figure 29 on page 95.)

Ending an Editing Session
When you finish editing a particular file, you can enter a FILE or QUIT
subcommand for that file. The file is removed from the ring, and the previous file in
the ring is displayed.

To end the editing session for all of the files and return control to CMS, use the
CANCEL macro, as follows:

====> cancel

Entering the CANCEL macro is equivalent to entering a QUIT subcommand for
each file in the ring. If you modified any of the files, the usual warning message is
displayed for each of those files:

File has been changed; type QQUIT to quit anyway

94 z/VM: XEDIT User's Guide

 Editing Multiple Files

You can then enter either QQUIT or FILE.

If none of the files being canceled were modified, control returns immediately to
CMS.

Multiple Logical Screens
Our discussion, up until now, has been on editing multiple files with one file, the
current file in the ring, displayed at a time. By using the SET SCREEN
subcommand, you can divide the screen into multiple logical screens. The screen
can be split vertically, horizontally, or in a combination of vertical and horizontal
segments. You can display a different file from the ring in each logical screen, or
you can display multiple views of the same file.

Each logical screen looks and functions like an independent terminal with its own
file identification line, command line, and message line. For more information about
multiple logical screens, see z/VM: XEDIT Commands and Macros Reference.

C u r r e n t F i l e (*) X E D I T S u b c o m m a n d N e w C u r r e n t F i l e (*)

1

2

3

= = = > X E D I T F I L E B

= = = > X E D I T

*

*

*

**

*

= = = > X E D I T F I L E D

F I L E A F I L E A

F I L E AF I L E A

F I L E A

F I L E B F I L E B

F I L E B F I L E B

F I L E B

F I L E B

F I L E CF I L E C

F I L E C

F I L E C F I L E C

F I L E C

F I L E A

F I L E D

Figure 29. Editing Files in the Ring

 Chapter 5. Editing Multiple Files 95

 Editing Multiple Files

SET SCREEN Subcommand
Entering the command SET SCR 2 splits the screen horizontally into two screens,
one on top of the other.

The command SET SCR 2 V splits the screen vertically into two screens, one
beside the other.

Using the SIZE option with the SET SCREEN subcommand lets you create
horizontal screens with the number of lines you specify. For example, SET SCR
SIZE 14 10 creates two screens, one with 14 lines and another with 10 lines.

Likewise, the WIDTH option specifies the number of columns each vertical screen
will contain. If you enter SET SCR WID 25 25 30, 3 vertical screens are created:
the first with 25 columns, the second with 25 columns, and the third with 30
columns.

The initial setting of the SCREEN option is SCREEN SIZE n, where n is the screen
size.

To return to the initial setting, enter the following subcommand:

====> set screen 1

For more information about this command, see z/VM: XEDIT Commands and
Macros Reference.

Multiple Views of the Same File
If only one file is in virtual storage and you enter a SET SCREEN subcommand,
identical views of the file appear on the screen.

Figure 30 on page 98 is a before-and-after example of a SET SCREEN
subcommand that creates two views of the same file.

Making Changes from Multiple Views of the Same File
You can edit a file by typing over the data in any of the views and by entering
subcommands in any of the command lines and prefix areas. You can type related
prefix subcommands in different views of a file, even when different parts of the file
are displayed. For example, you can type a C (copy) prefix subcommand in one
view and a P (preceding) prefix subcommand in another view. Changes made to
the file from one logical screen are reflected immediately in all screens.

However, subcommands that control the screen display, for example, FORWARD,
affect only that screen from which they were entered. Therefore, you can see
different parts of a file at the same time.

Similarly, PF keys assigned to screen movement subcommands are executed only
on the view that contains the cursor when you press a PF key.

If any of the views are later used to display another file in the ring, the
characteristics for that view of the original file are not saved unless it is the last
view of the original file.

96 z/VM: XEDIT User's Guide

 Editing Multiple Files

Multiple Views of Different Files
When you are editing multiple files and you enter a SET SCREEN subcommand
that increases the number of logical screens, files from the ring immediately fill the
additional screens.

Figure 31 on page 100 illustrates how files from the ring fill additional logical
screens. The ring of files contains files named FILE1 and FILE2; the current file is
FILE1. The SET SCREEN subcommand shown in the top screen causes another
file to be displayed.

If a SET SCREEN subcommand decreases the number of logical screens, files are
displayed as long as logical screens are available. Those files for which logical
screens are not available are removed from the display.

Entering an XEDIT subcommand from one of multiple screens is just like entering it
when there is only one screen. It does not affect the other logical screens. In all
cases, the file is displayed only on the screen from which the XEDIT subcommand
was entered.

The status area of all the screens displays the number of files in virtual storage, not
the number of screens.

 Chapter 5. Editing Multiple Files 97

 Editing Multiple Files

� �
 NASH SCRIPT A1 V 132 Trunc=132 Size=6 Line=6 Col=1 Alt=�

===== � � � Top of File � � �

===== THE OCTOPUS

=====

===== TELL ME, O OCTOPUS, I BEGS,

===== IS THOSE THINGS ARMS, OR IS THEY LEGS?

===== I MARVEL AT THEE, OCTOPUS:

===== IF I WERE THOU, I'D CALL ME US.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== � � � End of File � � �

====> SET SCREEN 2

X E D I T 1 File

� �

� �
 NASH SCRIPT A1 V 132 Trunc=132 Size=6 Line=6 Col=1 Alt=�

===== TELL ME, O OCTOPUS, I BEGS,

===== IS THOSE THINGS ARMS, OR IS THEY LEGS?

===== I MARVEL AT THEE, OCTOPUS:

===== IF I WERE THOU, I'D CALL ME US.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== � � � End of File � � �

====>

X E D I T 1 File

 NASH SCRIPT A1 V 132 Trunc=132 Size=6 Line=6 Col=1 Alt=�

===== TELL ME, O OCTOPUS, I BEGS,

===== IS THOSE THINGS ARMS, OR IS THEY LEGS?

===== I MARVEL AT THEE, OCTOPUS:

===== IF I WERE THOU, I'D CALL ME US.

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== � � � End of File � � �

====>

X E D I T 1 File

� �

Figure 30. Multiple Horizontal Views of the Same File

Order of Processing
You can type over the data, type subcommands on the command line, and type
prefix subcommands and macros in the prefix area of all views of a file(s) before
pressing a key (like the Enter key) that effects the changes.

The editor processes requests typed on different views in the following order:

1. Changes typed over the data in all the views are made first. Changes are
processed in the order the data lines appear on the physical screen, from the
top, moving left to right, to the bottom.

2. Prefix subcommands and macros are executed next, as follows:

98 z/VM: XEDIT User's Guide

 Editing Multiple Files

Prefix subcommands and macros are also scanned in the order they appear on
the virtual screen. As they are scanned, they are placed in a pending list.
Once the scanning is complete, the pending list is executed. Only one pending
list is maintained for each file, regardless of the number of views of that file. All
views of the file are updated to reflect the changes.

The pending list is executed from the first view of each file or from the view that
contains the cursor, if any view does. This means all messages from prefix
subcommands and macros are displayed in the screen from which the pending
list is executed. Cursor positioning for prefix subcommands and macros is
determined by what lines are displayed in the screen with the cursor. Note that
when multiple files are displayed, one pending list is executed for each file, and
all views reflect the changes. See “Cursor Considerations.”

For more information on the pending list, see Chapter 7, “The Macrolanguage”
on page 111.

3. Subcommands typed on the command lines are executed last and in the
following order:

With multiple horizontal screens, the command lines are processed from the top
view to the bottom view. With multiple vertical screens, the command lines are
processed left to right. With a combination of horizontal and vertical screens,
the command lines are processed in the same order the screens were defined
in the SET SCREEN DEFINE subcommand.

 Cursor Considerations
The cursor remains in the view that contained it when you pressed Enter (or a PA
or PF key). This is true even if a CURSOR subcommand is entered in another
view. If no view of a file contained the cursor (for example, if part of the screen
was left undefined and your cursor was positioned there), the cursor is placed in
the first logical screen on the screen (the top-most screen for horizontal views, the
left-most screen for vertical views, or the first view defined with SET SCREEN
DEFINE).

You can move the cursor from one logical screen to another by entering SOS
TABCMDF or SOS TABCMDB.

For more information on the SET SCREEN subcommand, see z/VM: XEDIT
Commands and Macros Reference.

 Chapter 5. Editing Multiple Files 99

 Editing Multiple Files

� �
 FILE1 SCRIPT A1 V 132 Trunc=132 Size=7 Line=� Col=1 Alt=�

===== � � � Top of File � � �

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== THE PANTHER

===== THE PANTHER IS LIKE A LEOPARD,

===== EXCEPT IT HASN'T BEEN PEPPERED.

===== SHOULD YOU BEHOLD A PANTHER CROUCH,

===== PREPARE TO SAY OUCH.

===== BETTER YET, IF CALLED BY A PANTHER,

===== DON'T ANTHER.

===== � � � End of File � � �

====> set screen 2 v

X E D I T 2 Files

� �

� �
FILE1 SCRIPT A1 V 132 Trunc=132 FILE2 SCRIPT A1 V 132 Trunc=132

===== � � � Top of File � � � ===== � � � Top of File � � �

 |...+....1....+....2....+....3... |...+....1....+....2....+....3...

===== THE PANTHER ===== THE CANARY

===== THE PANTHER IS LIKE A LEOPARD, ===== THE SONG OF CANARIES

===== EXCEPT IT HASN'T BEEN PEPPERED. ===== NEVER VARIES.

===== SHOULD YOU BEHOLD A PANTHER CROUC ===== AND WHEN THEY'RE MOULTING

===== PREPARE TO SAY OUCH. ===== THEY'RE PRETTY REVOLTING.

===== BETTER YET, IF CALLED BY A PANTHE ===== � � � End of File � � �

===== DON'T ANTHER.

===== � � � End of File � � �

====> ====>

� �

Figure 31. Multiple Vertical Views of Different Files

100 z/VM: XEDIT User's Guide

 Tailoring the Screen

Chapter 6. Tailoring the Screen

This chapter explains how you can change your screen to suit your editing session.

Tailoring using SET subcommand options
By using the following SET subcommand options, you can tailor the full-screen
layout to suit your preferences:

 SET PREFIX
 SET CMDLINE
 SET MSGLINE
 SET CURLINE
 SET SCALE
 SET TABLINE
 SET COLOR
 SET NUMBER

For a complete description of these options, see the SET subcommand description
in z/VM: XEDIT Commands and Macros Reference.

The areas of the screen that can be changed are discussed below.

 Prefix Area
Use the SET PREFIX subcommand to control the display of the prefix area. You
can display the prefix area on the left or the right side of the screen, or you can
remove the prefix area from the display or you can set NULLS in the prefix area.
Initially, the prefix area is displayed on the left.

 Command Line
Use the SET CMDLINE subcommand to move the command line to the top (the
second line of the screen), to the bottom (the last line of the screen), or to remove
the command line from the screen. Initially, the command line is the last two lines
of the screen. If you move the command line to the top, bottom, or off, the status
area is not displayed.

With SET CMDLINE TOP (command line on line 2) and the default SET MSGLINE
setting (line 2), a message overlays the command line, including the arrow. You
must press Enter or Clear to recover the command line. To avoid this situation,
assign the message line to line 1 or line 3 when using CMDLINE TOP.

 Message Line
Use the SET MSGLINE subcommand to define the location of the message line on
the screen, and the number of lines the message may expand to, to avoid clearing
the screen to display the message. It may also be used to override the blank line
that is normally displayed on the screen for messages.

 Copyright IBM Corp. 1990, 2005 101

 Tailoring the Screen

 Current Line
Use the SET CURLINE subcommand to establish the position of the current line on
the screen. Initially, the current line is in the middle of the screen.

Remember the editor uses the first line of the screen for the file identification line.
Therefore, if you want the current line to be the first available screen line, use the
subcommand SET CURLINE ON 2.

One reason you might want to change the position of the current line is to vary the
size of the input zone. When you issue an INPUT subcommand, the editor
provides an input zone between the current line and the command line. To get a
larger input zone, move the current line higher on the screen; to get a smaller input
zone, move it lower on the screen.

 Scale
Use the SET SCALE subcommand to move the scale to a specified line, or to
remove the scale from the display. Initially, the scale is positioned under the
current line. If you move the current line, you probably also will want to move the
scale.

 Tab Line
Use the SET TABLINE subcommand to display, on a specified line, a T in every
tab column, according to the current tab settings (as defined with the SET TABS
subcommand). Initially, a tab line is not displayed. If you change the tab settings
during an editing session, the tab line reflects that change, that is, the Ts are
placed in the new tab columns.

 Color
Depending on the features supported by your terminal, you can use the SET
COLOR subcommand to associate specific colors, highlighting, extended
highlightings, and programmed symbol set features with various physical locations
on the screen. The physical locations include the arrow, current line, file area,
prefix area, command line, scale line, tab line, file identification line, pending
message display area, shadow line, status area, top of file and end of file lines, and
the message line. Colors associated with those areas can be: blue, red, pink,
green, turquoise, yellow, white, or your default terminal display color. You can
accentuate this capability by using programmed symbol sets or extended
highlighting features such as blinking, reverse video, and underlining. Note this
option may be specified as COLOR or COLOUR.

For a complete explanation of this function see z/VM: XEDIT Commands and
Macros Reference.

 Number
Use the SET NUMBER subcommand to specify whether the prefix area should
contain line numbers. Initially, equal signs are used.

Figure 32 through Figure 37 illustrates how some of the subcommands discussed
above tailor the screen. Notice how the screen changes when the subcommand
shown in the command line of each screen is executed.

102 z/VM: XEDIT User's Guide

 Tailoring the Screen

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

===== � � � Top of File � � �

===== THE PANTHER

=====

===== THE PANTHER IS LIKE A LEOPARD,

===== EXCEPT IT HASN'T BEEN PEPPERED.

===== SHOULD YOU BEHOLD A PANTHER CROUCH,

===== PREPARE TO SAY OUCH.

===== BETTER YET, IF CALLED BY A PANTHER,

===== DON'T ANTHER.

=====

 |...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

===== THE CANARY

=====

===== THE SONG OF CANARIES

===== NEVER VARIES.

===== AND WHEN THEY'RE MOULTING

===== THEY'RE PRETTY REVOLTING.

=====

===== THE GIRAFFE

=====

====> SET PREFIX ON RIGHT

X E D I T 1 File

� �

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

� � � Top of File � � � =====

THE PANTHER =====

 =====

THE PANTHER IS LIKE A LEOPARD, =====

EXCEPT IT HASN'T BEEN PEPPERED. =====

SHOULD YOU BEHOLD A PANTHER CROUCH, =====

PREPARE TO SAY OUCH. =====

BETTER YET, IF CALLED BY A PANTHER, =====

DON'T ANTHER. =====

 =====

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

====>

X E D I T 1 File

� �

Figure 32. SET PREFIX Subcommand — Before and After

 Chapter 6. Tailoring the Screen 103

 Tailoring the Screen

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

� � � Top of File � � � =====

THE PANTHER =====

 =====

THE PANTHER IS LIKE A LEOPARD, =====

EXCEPT IT HASN'T BEEN PEPPERED. =====

SHOULD YOU BEHOLD A PANTHER CROUCH, =====

PREPARE TO SAY OUCH. =====

BETTER YET, IF CALLED BY A PANTHER, =====

DON'T ANTHER. =====

 =====

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

====> SET CMDLINE TOP

X E D I T 1 File

� �

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

====>

� � � Top of File � � � =====

THE PANTHER =====

 =====

THE PANTHER IS LIKE A LEOPARD, =====

EXCEPT IT HASN'T BEEN PEPPERED. =====

SHOULD YOU BEHOLD A PANTHER CROUCH, =====

PREPARE TO SAY OUCH. =====

BETTER YET, IF CALLED BY A PANTHER, =====

DON'T ANTHER. =====

 =====

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

I BEG YOU, CHILDREN, DO NOT LAUGH =====

WHEN YOU SURVEY THE TALL GIRAFFE. =====

� �

Figure 33. SET CMDLINE Subcommand — Before and After

104 z/VM: XEDIT User's Guide

 Tailoring the Screen

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

====> SET CURLINE ON 3

� � � Top of File � � � =====

THE PANTHER =====

 =====

THE PANTHER IS LIKE A LEOPARD, =====

EXCEPT IT HASN'T BEEN PEPPERED. =====

SHOULD YOU BEHOLD A PANTHER CROUCH, =====

PREPARE TO SAY OUCH. =====

BETTER YET, IF CALLED BY A PANTHER, =====

DON'T ANTHER. =====

 =====

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

I BEG YOU, CHILDREN, DO NOT LAUGH =====

WHEN YOU SURVEY THE TALL GIRAFFE. =====

� �

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

====>

 =====

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

I BEG YOU, CHILDREN, DO NOT LAUGH =====

WHEN YOU SURVEY THE TALL GIRAFFE. =====

IT'S HARDLY SPORTING TO ATTACK =====

A BEAST THAT CANNOT ANSWER BACK. =====

HE HAS A TRUMPET FOR A THROAT, =====

AND CANNOT BLOW A SINGLE NOTE. =====

IT ISN'T THAT HIS VOICE HE HOARDS; =====

HE HASN'T ANY VOCAL CORDS. =====

I WISH FOR HIM, AND FOR HIS WIFE, =====

A VOLUBLE GIRAFTER LIFE. =====

� � � End of File � � � =====

� �

Figure 34. SET CURLINE Subcommand — Before and After

 Chapter 6. Tailoring the Screen 105

 Tailoring the Screen

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

====> SET SCALE OFF

 =====

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

I BEG YOU, CHILDREN, DO NOT LAUGH =====

WHEN YOU SURVEY THE TALL GIRAFFE. =====

IT'S HARDLY SPORTING TO ATTACK =====

A BEAST THAT CANNOT ANSWER BACK. =====

HE HAS A TRUMPET FOR A THROAT, =====

AND CANNOT BLOW A SINGLE NOTE. =====

IT ISN'T THAT HIS VOICE HE HOARDS; =====

HE HASN'T ANY VOCAL CORDS. =====

I WISH FOR HIM, AND FOR HIS WIFE, =====

A VOLUBLE GIRAFTER LIFE. =====

� � � End of File � � � =====

� �

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

====>

 =====

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

I BEG YOU, CHILDREN, DO NOT LAUGH =====

WHEN YOU SURVEY THE TALL GIRAFFE. =====

IT'S HARDLY SPORTING TO ATTACK =====

A BEAST THAT CANNOT ANSWER BACK. =====

HE HAS A TRUMPET FOR A THROAT, =====

AND CANNOT BLOW A SINGLE NOTE. =====

IT ISN'T THAT HIS VOICE HE HOARDS; =====

HE HASN'T ANY VOCAL CORDS. =====

I WISH FOR HIM, AND FOR HIS WIFE, =====

A VOLUBLE GIRAFTER LIFE. =====

� � � End of File � � � =====

� �

Figure 35. SET SCALE Subcommand — Before and After

106 z/VM: XEDIT User's Guide

 Tailoring the Screen

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

====> SET TABLINE ON 4

 =====

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

I BEG YOU, CHILDREN, DO NOT LAUGH =====

WHEN YOU SURVEY THE TALL GIRAFFE. =====

IT'S HARDLY SPORTING TO ATTACK =====

A BEAST THAT CANNOT ANSWER BACK. =====

HE HAS A TRUMPET FOR A THROAT, =====

AND CANNOT BLOW A SINGLE NOTE. =====

IT ISN'T THAT HIS VOICE HE HOARDS; =====

HE HASN'T ANY VOCAL CORDS. =====

I WISH FOR HIM, AND FOR HIS WIFE, =====

A VOLUBLE GIRAFTER LIFE. =====

� � � End of File � � � =====

� �

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

====>

 =====

T T T T T T T T T T T T T T T

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

I BEG YOU, CHILDREN, DO NOT LAUGH =====

WHEN YOU SURVEY THE TALL GIRAFFE. =====

IT'S HARDLY SPORTING TO ATTACK =====

A BEAST THAT CANNOT ANSWER BACK. =====

HE HAS A TRUMPET FOR A THROAT, =====

AND CANNOT BLOW A SINGLE NOTE. =====

IT ISN'T THAT HIS VOICE HE HOARDS; =====

HE HASN'T ANY VOCAL CORDS. =====

I WISH FOR HIM, AND FOR HIS WIFE, =====

A VOLUBLE GIRAFTER LIFE. =====

� � � End of File � � � =====

� �

Figure 36. SET TABLINE Subcommand — Before and After

 Chapter 6. Tailoring the Screen 107

 Tailoring the Screen

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

====> SET MSGLINE ON 3 15 OVERLAY

 =====

T T T T T T T T T T T T T T T

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

I BEG YOU, CHILDREN, DO NOT LAUGH =====

WHEN YOU SURVEY THE TALL GIRAFFE. =====

IT'S HARDLY SPORTING TO ATTACK =====

A BEAST THAT CANNOT ANSWER BACK. =====

HE HAS A TRUMPET FOR A THROAT, =====

AND CANNOT BLOW A SINGLE NOTE. =====

IT ISN'T THAT HIS VOICE HE HOARDS; =====

HE HASN'T ANY VOCAL CORDS. =====

I WISH FOR HIM, AND FOR HIS WIFE, =====

A VOLUBLE GIRAFTER LIFE. =====

� � � End of File � � � =====

� �

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

====> QUERY COLOR �

 =====

T T T T T T T T T T T T T T T

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE =====

 =====

I BEG YOU, CHILDREN, DO NOT LAUGH =====

WHEN YOU SURVEY THE TALL GIRAFFE. =====

IT'S HARDLY SPORTING TO ATTACK =====

A BEAST THAT CANNOT ANSWER BACK. =====

HE HAS A TRUMPET FOR A THROAT, =====

AND CANNOT BLOW A SINGLE NOTE. =====

IT ISN'T THAT HIS VOICE HE HOARDS; =====

HE HASN'T ANY VOCAL CORDS. =====

I WISH FOR HIM, AND FOR HIS WIFE, =====

A VOLUBLE GIRAFTER LIFE. =====

� � � End of File � � � =====

� �

Figure 37 (Part 1 of 2). SET MSGLINE on Multiple Lines with Overlay

108 z/VM: XEDIT User's Guide

 Tailoring the Screen

� �
TAILOR SCRIPT A1 V 132 Trunc=132 Size=28 Line=9 Col=1 Alt=�

====>

COLOR ARROW DEFAULT NONE HIGH PS�

COLOR CMDLINE DEFAULT NONE NOHIGH PS�

COLOR CURLINE DEFAULT NONE HIGH PS�

COLOR FILEAREA DEFAULT NONE NOHIGH PS�

COLOR IDLINE DEFAULT NONE HIGH PS�

COLOR MSGLINE RED NONE HIGH PS�

COLOR PENDING DEFAULT NONE HIGH PS�

COLOR PREFIX DEFAULT NONE NOHIGH PS�

COLOR SCALE DEFAULT NONE HIGH PS�

COLOR SHADOW DEFAULT NONE NOHIGH PS�

COLOR STATAREA DEFAULT NONE HIGH PS�

COLOR TABLINE DEFAULT NONE HIGH PS�

COLOR TOFEOF DEFAULT NONE NOHIGH PS�

 =====

THE CANARY =====

 =====

THE SONG OF CANARIES =====

NEVER VARIES. =====

AND WHEN THEY'RE MOULTING =====

THEY'RE PRETTY REVOLTING. =====

 =====

THE GIRAFFE

� �

Figure 37 (Part 2 of 2). SET MSGLINE on Multiple Lines with Overlay

 Chapter 6. Tailoring the Screen 109

 Tailoring the Screen

110 z/VM: XEDIT User's Guide

 The Macrolanguage

 Chapter 7. The Macrolanguage

The macrolanguage is one of the most powerful facilities the editor provides. By
writing macros, you can:

� Expand the basic subcommand language
� Expand the prefix subcommand language
� Tailor the language to your own application
� Eliminate repetitive tasks

This chapter explains how to write an XEDIT macro, discusses those XEDIT
subcommands designed for use in macros, describes an XEDIT macro written for a
text processing application, explains a profile macro, and explains how to write
prefix macros. You should be familiar with the Restructured Extended Executor
(REXX) language, which is described in z/VM: REXX/VM User’s Guide and z/VM:
REXX/VM Reference before you read this chapter.

What Is an XEDIT Macro?
An XEDIT macro is a REXX file invoked from the XEDIT environment.

Note: The XEDIT macro cannot be a BFS file.

You execute a macro the same way you execute XEDIT subcommands; type the
macro name on the command line (or the prefix area) and press Enter. You can
execute a macro by entering only its name (or synonym), or its execution may also
depend on arguments you enter when invoking the macro.

A macro file can contain:

 � XEDIT subcommands
 � REXX instructions
� CMS and CP commands

Creating a Macro File
Because an XEDIT macro is a normal CMS file, you can create it in any of the
ways CMS provides for file creation. You can even create it dynamically, by using
the XEDIT multiple file editing capability (see Chapter 5, “Editing Multiple Files” on
page 93). After you issue FILE or SAVE for the macro file, you can use the macro.

Like any CMS file, a macro file has a file name, file type, and file mode. The file
identifier for a macro file must follow certain rules:

� For macros you enter from the command line, the file name is a string of 1-8
alphanumeric characters. This name invokes the macro. For example, if the
file name is SEND, entering SEND during an editing session causes the macro
to be executed. (For information on the search order and handling file names
that contain numbers, see “Avoiding Name Conflicts” on page 116.)

Prefix macro file names can be 1-8 characters, but they cannot contain
numbers. (Because the prefix area is only five positions long, you can define a
synonym for a prefix macro file name that is longer than five characters. For
more information on defining synonyms for prefix macros, see “Writing Prefix

 Copyright IBM Corp. 1990, 2005 111

 The Macrolanguage

Macros” on page 124, and the SET PREFIX subcommand description in z/VM:
XEDIT Commands and Macros Reference.)

� The file type must be XEDIT.

� The file mode can specify any of your accessed disks or SFS directories, for
example, A1.

Using XEDIT Subcommands in a Macro
A macro can contain any XEDIT subcommand, with the following exceptions: prefix
macros cannot contain READ, QUIT, FILE, SET RANGE, SORT, and LPREFIX.
However, some subcommands perform functions meaningful only in the context of
a macro, for example, one that passes information to REXX.

The following list summarizes these subcommands; some are then discussed
according to function. For detailed information on all these subcommands, see
z/VM: XEDIT Commands and Macros Reference.

CMS SET CTLCHAR
CMSG SET COLOR
COMMAND SET DISPLAY
CP SET MSGLINE
CURSOR SET MSGMODE
EMSG SET PENDING
EXTRACT SET RESERVED
MACRO SET SCOPE
MSG SET SELECT
PRESERVE STACK
READ SUPERSET
RESTORE

Communicating between the Editor and the Interpreter
The READ and EXTRACT subcommands supply a macro with information.

The READ subcommand finds out what the user has entered on the screen. It
places fields that have been changed on the screen in the console stack. Once
something is in the console stack, the macro cannot use it until it is taken out of the
console stack. The REXX PULL instruction takes information out of the console
stack and assigns it to program variables, which the macro can then examine.

The EXTRACT subcommand can supply a macro with information about internal
XEDIT variables or about file data. The information is returned in one or more
variables, which the macro can then examine or use.

The following sections provide examples of using READ and EXTRACT.

112 z/VM: XEDIT User's Guide

 The Macrolanguage

 READ Subcommand
When a macro issues a READ subcommand, the editor displays

Macro-read

in the status area of your screen and waits for you to enter data or press a key.
(The file image remains on the screen.) After you press a key, the data is placed
in the console stack.

Operands of the READ subcommand specify how much information is placed in the
console stack. The READ subcommand can place either the command line or all
changed lines in the console stack. You can also specify inserting a tag identifying
the origin of the line(s) at the beginning of each line stacked.

A subsequent REXX PULL instruction assigns the data to program variable(s), and
the macro continues executing.

The READ subcommand has the following format:

 ┌ ┐─Cmdline────────────────── ┌ ┐─Notag─
��──READ─ ──┼ ┼────────────────────────── ──┼ ┼─────── ─────────────────��
 └ ┘ ──┬ ┬─All────── ──┬ ┬──────── └ ┘─Tag───
 └ ┘─Nochange─ └ ┘─Number─

 Where:

Cmdline
indicates only the command line is stacked.

All
indicates anything changed on the screen is stacked.

Nochange
is similar to ALL, but the copy of the file in storage is not updated.

Number
indicates line numbers prefix changed file lines. Prefix area changes will be
prefixed by their associated file line numbers only if the TAG option is
specified.

Notag
indicates no tags are inserted.

Tag
indicates inserting a tag identifying the origin of changed lines at the
beginning of each line stacked.

Generally, a macro displays a message requesting you to enter data on the
command line before it issues a READ.

For example:

MSG ENTER FILENAME FILETYPE FILEMODE

Displays ENTER FILENAME FILETYPE FILEMODE.

READ CMDLINE

User enters MYFILE SCRIPT A in the command line and READ puts it in the
console stack.

 Chapter 7. The Macrolanguage 113

 The Macrolanguage

PULL FN FT FM

Takes the file ID out of the stack and assigns MYFILE, SCRIPT, and A to FN,
FT, and FM, respectively.

The EXTRACT Subcommand
The EXTRACT subcommand returns information about editing options (options the
SET subcommand defines) as well as other file data that is not explicitly set. The
information is returned as one or more variables in the form name.n; name is the
same as the variable requested and n is a subscript that distinguishes the different
values returned for each option requested.

For example, to get information about the case setting, a macro could issue:

extract /CASE/

This returns information about the contents of the case setting in the following
variables:

CASE.� number of variables returned

CASE.1 MIXED|UPPER

CASE.2 RESPECT|IGNORE

The macro could use this information as follows:

msg "The current case setting is" case.1 case.2

MSG, EMSG, and CMSG Subcommands
A macro can communicate with the user by displaying messages in the message
line of the screen. Messages have various purposes, for example, requesting the
user to enter data, telling a user an error has occurred during processing, and so
forth.

The following two subcommands display a message in the message line:

MSG
displays a message in the message line.

EMSG
displays a message in the message line and sounds the alarm.

For example:

msg ENTER FILE NAME

Displays ENTER FILE NAME in the message line.

emsg MISSING OPERANDS

Displays MISSING OPERANDS in the message line and sounds the alarm.

Note: REXX also provides an instruction, SAY, that displays one line of data at
the terminal. However, the SAY instruction clears the screen before displaying the
data.

The XEDIT subcommands MSG and EMSG keep the file image on the screen and
display the data in the message line. Therefore, you should use them instead of
SAY in a macro.

The following subcommand displays a message in the command line:

CMSG

114 z/VM: XEDIT User's Guide

 The Macrolanguage

When issued from a macro, the CMSG subcommand can redisplay input the user
has entered incorrectly so the user can correct and reenter it.

SET MSGMODE Subcommand
The SET MSGMODE subcommand controls whether messages are displayed:

set msgmode on All messages are displayed.

set msgmode off No messages are displayed.

By turning the message mode on and off during a macro, you can select when you
want messages displayed.

SET RESERVED Subcommand
When issued from a macro, the SET RESERVED subcommand reserves a
specified line on the screen for the macro's use, thereby preventing the editor from
using that line. The line can be used for displaying blank or specified information,
which can optionally be displayed in various ways for emphasis. For example,
depending on the features your terminal supports, you can display the line
highlighted, using a programmed symbol set, in various colors, or with extended
highlighting features (blinking, reverse video, or underlining).

For example, the following subcommand:

set reserved 1� HIGH YOU CAN'T USE THIS LINE.

displays, on the tenth line of the screen, “You can’t use this line.” The line is
highlighted.

Another example of SET RESERVED is shown with SET CTLCHAR, discussed
below.

SET CTLCHAR Subcommand
The SET CTLCHAR subcommand specifies attributes for fields within a reserved
line. Depending on the features your terminal supports, you can display these
fields highlighted, protected, invisible, in various colors, using different programmed
symbol sets, or with extended highlighting features (blinking, reverse video, or
underlining).

In the following example, note how SET RESERVED and SET CTLCHAR control
exactly how the reserved lines are displayed.

/� This XEDIT macro will show examples of using SET CTLCHAR �/

'SET CTLCHAR % ESCAPE'

'SET CTLCHAR + PROTECT BLUE REVVIDEO NOHIGH'

'SET CTLCHAR J NOPROTECT GREEN UNDERLINE NOHIGH'

'SET RESERVED 3 YEL HIGH This is Yellow%+And this is Blue and Reversed.'

'SET RESERVED 5 RED BLINK NOH Red and Blinking%JGreen and Underlined.'

 Chapter 7. The Macrolanguage 115

 The Macrolanguage

 SUPERSET Subcommand
The SUPERSET subcommand lets you enter multiple SET options on one
subcommand to improve performance. You will save time by using SUPERSET
with any of the SET options. For example, the following subcommand:

superset /scale on/autosave 5/case mixed/cmdline top/

quickly sets your scale on, issues the SAVE subcommand after 5 changes to the
file, lets you type in mixed case, and moves your command line to the top of the
file.

 CURSOR Subcommand
The CURSOR subcommand moves the cursor to a specified position on the
screen, and, optionally, assigns a priority to that position. For example, the editor
has a macro called SCHANGE, which looks for a string and moves the cursor
under the string if it is found. For an example of using the CURSOR subcommand,
see “Positioning the Cursor” on page 130.

Saving and Restoring Editing Variables
The PRESERVE subcommand saves the settings of various editing variables until a
subsequent RESTORE subcommand. For example, you might want to preserve a
setting so you can change it for the duration of the macro, and restore it before the
macro finishes executing. For a complete list of the variables affected, see the
PRESERVE subcommand description in z/VM: XEDIT Commands and Macros
Reference.

Entering CMS and CP Commands
As you have seen, an XEDIT macro can contain XEDIT subcommands, REXX
instructions, and CMS and CP commands. CMS and CP commands can be issued
as operands of the XEDIT subcommands CMS and CP, respectively.

For example:

CMS ERASE FILEA SCRIPT

(The REXX instructions ADDRESS CMS and ADDRESS COMMAND can also
issue CMS and CP commands.)

Note: If, from the XEDIT environment, you invoke a CMS exec that then uses the
ADDRESS XEDIT instruction to call other CMS execs from the XEDIT environment,
your routine may terminate abnormally because of a lack of storage. To avoid this
problem when these circumstances arise, use the ADDRESS XEDIT instruction
only to invoke XEDIT macros (that is, files with file types of XEDIT), not to invoke
CMS execs.

Avoiding Name Conflicts
The COMMAND subcommand causes the editor to execute a specified
subcommand without first checking to see if a synonym or macro with the same
name exists. This subcommand overrides SET SYNONYM ON or SET MACRO
ON (discussed in the following).

For example:

COMMAND PRESERVE

116 z/VM: XEDIT User's Guide

 The Macrolanguage

executes the PRESERVE subcommand, even if a synonym or macro with the same
name exists.

Similarly, the MACRO subcommand causes the editor to execute a specified macro
without first checking to see if a subcommand of the same name or a synonym
exists. (Of course, this cannot be used for prefix macros.)

You can use the MACRO subcommand to avoid name conflicts, in the following
manner. When a subcommand has a number as its operand, a blank is not
required between the subcommand name and the operand. For example, the
editor interprets both NEXT8 and N8 as the subcommand NEXT 8. Therefore, if a
macro name were also N8, the macro would not be executed; the subcommand
NEXT 8 would be executed instead. To execute the macro, you could enter the
following:

MACRO N8

The macro named N8 would then be executed.

You can use the SET MACRO subcommand to control the order in which the editor
searches for subcommands and macros. SET MACRO ON tells the editor to look
for macros before it looks for subcommands; SET MACRO OFF reverses the order.

In addition, SET SYNONYM specifies whether the editor looks for synonyms.

Walking through an XEDIT Macro
The following XEDIT macro (Figure 38 on page 118) is an example of the type of
macro you might write to make life a little easier. The application is typical of a text
processing file arrangement, where many SCRIPT files are imbedded in a master
file, with the SCRIPT control word .im.

The problem with this type of setup is that if you have to make a global change
throughout all the files, you have to edit each file, make the change, and then file
each file.

When issued from the master file, this macro edits each file, performs a global
change, and files it.

The macro is invoked by entering the macro name, GLOBCHG. The arguments
passed to the macro are the old data and the new data, enclosed in delimiters:

GLOBCHG /string1/string2/

For example, if a file called MASTER SCRIPT contains:

.im FILE1

.im FILE2

 .

 .

 .

.im FILE1��

and the following commands are issued:

XEDIT MASTER SCRIPT

GLOBCHG/WAR AND PEACE/SENSE AND NONSENSE/

 Chapter 7. The Macrolanguage 117

 The Macrolanguage

“WAR AND PEACE” is changed to “SENSE AND NONSENSE” each time it occurs
in every file. (In this macro, no attempt is made to execute the change on files that
may be imbedded at the next level.)

The GLOBCHG macro can also delete data throughout the files, by changing a
string to a null string, for example:

GLOBCHG /bad data//

The following is a listing of the macro, whose file ID is GLOBCHG XEDIT A1. After
the listing, each line in the macro is explained. For more information on REXX
statements in the macro, see z/VM: REXX/VM Reference.

����1 /� Do a global change on imbedded Script files �/

����2 /� Input to this macro is the CHANGE command to be executed on �/

����3 /� the file currently being xedited and on any files it imbeds. �/

����4 parse arg operand /� Get passed CHANGE cmd �/

����5 if operand = '' then do /� If omitted, then error �/

����6 emsg 'EXE545E Missing operand(s)' /� Give error message �/

����7 parse source . . me . /� Get this macros name �/

����8 cmsg me /� Put it on command line �/

����9 exit /� Leave this macro �/

���1� end /� End of DO group �/

���11 preserve /� Save current status �/

���12 set wrap off /� Set wrap off �/

���13 set msgmode on /� Set message mode on �/

���14 set case mixed ignore /� Set proper case �/

���15 top /� Go to TOP of file �/

���16 find .im /� Find first imbed file �/

���17 if rc ¬= � then do /� If none found, give msg �/

���18 restore /� Restore previous status �/

���19 emsg 'No IMBED found.' /� Give message �/

���2� exit /� Leave this macro �/

���21 end /� End of DO group �/

���22 do while rc=� /� Imbed found, process it �/

���23 extract '/curline/' /� Get current line �/

���24 parse upper var curline.3 . fname . /� Separate out file name �/

���25 address command state fname 'SCRIPT �'/� Does this file exist? �/

���26 if rc ¬= � then do /� If not, issue message �/

���27 msg 'IMBEDed file' fname 'SCRIPT does not exist, bypassed.'

���28 find .im /� Search for next imbed �/

���29 iterate /� Cause next loop iterat'n�/

���3� end /� End of DO group �/

���31 xedit fname 'SCRIPT (NOPROFILE' /� File exists, XEDIT it �/

���32 extract '/fname/ftype/fmode/' /� Get name, type, mode �/

���33 msg 'Processing file' fname.1 ftype.1 fmode.1 /� Issue message �/

���34 change operand '� �' /� Issue CHANGE command �/

���35 file /� Save the file & quit �/

���36 find .im /� Find the next imbed �/

���37 end /� End of DO loop �/

���38 restore /� Loop ends, restore �/

���39 msg 'No more .imbeds found, global change completed.' /� Give msg �/

���4� exit /� All done, leave macro �/

Figure 38. Sample Macro

118 z/VM: XEDIT User's Guide

 The Macrolanguage

Now, let’s walk through the macro, a line at a time.

00001-00003 /* Do a global change on imbedded Script files */
REXX comment lines. The first line of any REXX macro must be a comment
line to tell the Interpreter this is a REXX file.

00004 parse arg operand
Place the passed arguments into the variable called OPERAND.

00005 if operand = " then do
If no arguments were entered when the macro was invoked, execute the
following statements until an END is reached (DO group). (OPERAND was
set to a null in line 4.)

00006 emsg ‘EXE545E Missing operand(s)’
Display this message.

00007 parse source . . me .
Look at the source string and place the name of this macro into the variable
ME.

00008 cmsg me
The macro name (in the variable ME) is displayed on the command line.

00009 exit
Return control to the editor.

00010 end
This statement signals the end of the DO group that began in line 5.

00011 preserve
This subcommand saves the editor settings until a subsequent RESTORE
subcommand is issued (line 38).

00012 set wrap off
Wrapping during the target search is turned off. When the end of the master
file is reached the macro ends, rather than wrapping around, searching for
“.im,” and getting caught in a loop.

00013 set msgmode on
Messages will be displayed. By turning the message mode on and off, you
can select which messages you want displayed.

00014 set case mixed ignore
In target searches, uppercase and lowercase representations of the same
letter will match.

00015 top
Move the line pointer to the top of the master file, which is the file from which
the macro was invoked.

00016 find .im
Search forward in the master file for the first line that contains “.im” in column
1, that is, locate the first line that imbeds a file.

00017 if rc ¬= 0 then do
If there is a nonzero return code from the FIND subcommand, no “.im” was
found, (previous statement), then do the following statements up to the END
(another DO group).

 Chapter 7. The Macrolanguage 119

 The Macrolanguage

00018 restore
Restore the settings of XEDIT variables to the values they had when the
PRESERVE subcommand was issued (line 11).

00019 emsg ‘No IMBED found.’
Display this message.

00020 exit
Return control to the editor.

00021 end
This statement signals the end of the DO group that was started in line 17.

00022 do while rc=0
Repeat the following statements (up to the END in line 37), as long as the
return code (RC) is 0. The initial value for RC is set with the FIND
subcommand in line 16; this point is only reached if RC was set to 0, which
means an imbedded file was found. The last statement in this loop is also a
FIND subcommand, and RC is reset to the return code for that FIND
subcommand just before returning to this point to execute the statements
again. When the return code is not 0, this macro continues with the
statement following the END (line 37).

00023 extract ‘/curline/’
Return information about the current line in macro variables, in the form
curline.n, where the subscript distinguishes among the variables.

00024 parse upper var curline.3 . fname .
CURLINE.3 contains the contents of the current line (as returned by the
preceding EXTRACT subcommand). In this case the current line is the .im
statement that was found through “find .im.” This statement takes the second
blank delimited word from the variable CURLINE.3 and puts it into the
variable fname.

00025 address command state fname 'SCRIPT *'
The STATE command is a CMS command that verifies the existence of a file.
This statement checks to see if the file named in the .im statement exists.
The quotes are needed around the asterisk to avoid confusion with the REXX
multiplication operator. Enclosing the word SCRIPT and the asterisk in
quotation marks makes it a literal string.

00026 if rc ¬=0 then do
If the return code from the STATE command is not zero, then do the following
statements up to the END statement in line 30 (DO group).

00027 msg ‘IMBEDed file’ fname ‘SCRIPT does not exist, bypassed.’
Display this message. REXX substitutes the value of fname in the message
before it is displayed.

00028 find .im
This locates the next imbed control word in the file.

00029 iterate
This statement tells REXX to go to the END statement and complete the
processing for this iteration of the DO loop.

00030 end
This statement signals the end of the DO group that was started in line 26.

120 z/VM: XEDIT User's Guide

 The Macrolanguage

00031 xedit fname ‘SCRIPT (NOPROFILE’
This statement invokes the editor (XEDIT) for the file specified. REXX
substitutes the value of fname in this line before passing it to XEDIT.

00032 extract ‘/fname/ftype/fmode/’
Returns the file name, file type, and file mode in macro variables.

00033 msg ‘Processing file’ fname.1 ftype.1 fmode.1
Displays the message, with the file identification as returned by EXTRACT.

00034 change operand ‘* *’
The global change is executed. OPERAND contains the arguments entered
when the macro was invoked (see line 4).

00035 file
The changed file is written to disk or directory.

00036 find .im
The editor resumes editing the master file, searching for the next “.im”
statement.

00037 end
This statement signals the end of the DO loop that was started in line 22.

00038 restore
Restore the settings of XEDIT variables to the values they had when the
PRESERVE subcommand was issued (line 11).

00039 msg ‘No more .imbeds found, global change completed.’
Display this message.

00040 exit
Return control to the editor. You can then issue a QUIT subcommand for the
master file.

A Profile Macro for Editing
As a CMS user, you are familiar with a PROFILE EXEC macro, which contains the
CMS and CP commands you normally issue at the start of a terminal session and
is executed automatically after you issue the IPL CMS command.

The editor offers a similar profile capability with a PROFILE XEDIT macro, which
contains XEDIT subcommands that tailor each editing session to suit your needs
and is executed automatically after you issue an XEDIT command (or
subcommand).

Executing a Profile Macro
The file type of an XEDIT profile macro must be XEDIT. If the file ID is PROFILE
XEDIT, the macro is executed automatically when you issue an XEDIT command
(or subcommand). You can write a PROFILE XEDIT macro, file it, and forget about
it. It is executed before each file is brought into storage.

Note: The XEDIT macro cannot be a BFS file.

If you do not want a PROFILE XEDIT macro to be executed for a particular editing
session, you can issue the following XEDIT command:

XEDIT fn ft (NOPROFILE

The PROFILE XEDIT macro is bypassed, and the file is brought into storage.

 Chapter 7. The Macrolanguage 121

 The Macrolanguage

Although the file type of a profile macro must be XEDIT, the file name does not
have to be PROFILE. If your profile macro has a name other than PROFILE, you
must indicate its file name in the PROFILE option of the XEDIT command.

For example, if the file ID is MYPROF XEDIT, you must issue the following XEDIT
command:

XEDIT fn ft (PROFILE MYPROF

The macro labeled MYPROF XEDIT is executed, even if a macro labeled PROFILE
XEDIT exists.

Writing a Profile Macro
A profile macro can be as simple or complex as you wish. Like any macro, it can
contain REXX statements, CMS and CP commands, and any XEDIT subcommands
or macros. It usually contains one or more SET subcommands that create an
editing environment to your liking.

It can also contain a LOAD subcommand, which only a profile macro can issue.
When the profile macro begins execution, a copy of the file has not yet been
brought into virtual storage. Therefore, a LOAD subcommand, which has the same
format and options as the XEDIT command (except for PROFILE and NOPROF,
which are ignored), can supply editing options not specified in the XEDIT command
itself.

Within the profile macro, the LOAD subcommand must be the first XEDIT
subcommand. If it is not, the editor automatically issues a LOAD subcommand; its
operands are the same as those issued in the XEDIT command. (REXX
statements and CMS commands can be issued before the LOAD.)

The profile macro can prompt the user for XEDIT command options or assign
values to editing variables before issuing the LOAD subcommand. For example, a
SCRIPT user might program his or her profile to issue a LOAD subcommand
specifying a default file type.

The options specified in the LOAD subcommand have a lower priority than those
specified in an XEDIT command. For example, a NOUPDATE option in the XEDIT
command overrides an UPDATE option specified in the LOAD subcommand.

When the LOAD subcommand is executed, the file is brought into virtual storage.

If the LOAD is successful, you will receive a return code of 0 or 3. If LOAD
completes with any other return code, all subsequent subcommands in the profile
macro are rejected with a unique return code of 6, and the editor automatically
issues a quit subcommand.

For detailed information on the LOAD subcommand, see z/VM: XEDIT Commands
and Macros Reference.

122 z/VM: XEDIT User's Guide

 The Macrolanguage

An Example of a Profile Macro
An example of a profile macro is shown in Figure 39.

����1 /� Sample XEDIT profile �/

����2 parse arg fn ft '(' options /� put arguments into variables �/

����3 if ft= '' then ft= 'SCRIPT' /� if no file type, use SCRIPT �/

����4 load fn ft '(' options /� issue LOAD statement �/

����5 set tabline on 22 /� put tab line on line 22 �/

����6 set scale on 22 /� put scale on line 22 �/

����7 set fullread on /� full-screen read on �/

����8 set nulls on /� end of line nulls on �/

����9 set number on /� line numbers to be used �/

���1� set pf1� save /� PF1� to SAVE �/

���11 set synonym fiel 4 file /� when my fingers don’t work �/

���12 exit /� exit this macro �/

Figure 39. A PROFILE XEDIT Macro

00001 /* Sample XEDIT profile */
Identifies the macro as a REXX file.

00002 parse arg fn ft ‘(’ options
Puts argument into variables.

00003 if ft= ‘’ then ft= ‘SCRIPT’
If no file type is assigned, this assigns a file type of SCRIPT.

00004 load fn ft ‘(’ options
Loads the file.

00005 set tabline on 22
Sets the tabline on line 22 of the screen.

00006 set scale on 22
Superimposes the scale on line 22 of the screen.

00007 set fullread on
Sets the full-screen read on to allow XEDIT to recognize 3270 null characters
in the middle of the screen lines.

00008 set nulls on
Sets NULLS ON to replace all trailing blanks with nulls.

00009 set number on
Sets NUMBER ON to assign a line number to each line in the file.

00010 set pf10 save
Sets PF10 to save the file.

00011 set synonym fiel 4 file
Sets a synonym “fiel” for the subcommand “file”.

00012 exit
Exit the macro.

 Chapter 7. The Macrolanguage 123

 The Macrolanguage

Writing Prefix Macros
You can write prefix macros for a variety of purposes, from performing a function
from the prefix area that is usually done by entering a subcommand on the
command line, to creating an entirely new function.

You must be familiar with the REXX language before reading this section. More
information on REXX can be found in the publications cited at the beginning of this
chapter.

Creating a Sample Prefix Macro
The U prefix macro gives the user the ability to translate one or more lines in a file
to uppercase, which is usually done by issuing the UPPERCAS subcommand in the
command line. When U is entered in the prefix area of a line, that line is translated
to uppercase. You can specify a number before or after the U to translate more
than one line; for example, 3U=== or =U5==.

The file is created with the XEDIT command:

XEDIT U XEDIT

The U prefix macro looks like this:

����1 /� This macro translates a line(s) to uppercase. �/

����2 arg . . pline op .

����3 If op = '' then op = 1

����4 'COMMAND :'pline 'UPPERCAS' op

����5 Exit �

What Information Is Passed to the Macro?
An argument string is automatically passed to a prefix macro when it is invoked. It
can supply a macro with information critical to its execution, like the line number of
the prefix area in which the macro was entered.

Line 2 (in the preceding macro) is a REXX statement that parses (splits up) the
string, according to the template shown. (The argument string is described in
greater detail later in this chapter.) Pline represents the line number of the prefix
area, and op represents the optional operand. These variable names provide the
macro with answers to the following questions:

On which line was the macro entered?
How many lines are to be translated to uppercase?

Line 3 determines if an operand was entered. If the operand is null, a default of 1
is assumed.

Line 4 makes the line in which the prefix macro was entered (pline) the new current
line and then issues the UPPERCAS subcommand, with the operand.

124 z/VM: XEDIT User's Guide

 The Macrolanguage

Current Line Positioning
Note that in line 4, :pline is an absolute line number target. It makes the prefix line
(pline) current for the UPPERCAS subcommand, which operates on the current
line.

After the pending list is finished executing, the current line is returned automatically
to the line that was current when it began execution. Therefore, even though pline
is made current for the UPPERCAS subcommand, the macro need not restore the
current line. To set the current line, you must override the automatic current line
restoration by issuing the subcommand:

set pending on /

Note: When the RESET subcommand is executed to clear the pending list, any
pending prefix macros are invoked with the CLEAR argument. In this case, the
prefix macro may issue subcommands to specify which line is current when it is
finished executing, that is, the current line is not automatically returned to the line
that was current when the prefix macros on the pending list were invoked.

Creating a Second Prefix Macro
Let’s create another prefix macro, called L, which gives the user the ability to
translate one or more lines in a file to lowercase. This is usually done by issuing
the LOWERCAS subcommand in the command line. This macro is similar in
function to the U macro described above; however, we will give the user the
additional ability of specifying a block of lines to be translated, by entering LL on
both the first and last lines of the block.

This macro is presented in segments, to illustrate various concepts. The entire
macro is shown at the end of this chapter.

Examining the Source String
You have already seen that an argument string is passed to a prefix macro when it
is invoked. A source string is also passed.

����7 parse source name .

����8 arg pref func pline op extra

Line 7 parses the source string according to the template shown. In this example,
the source string is used to get the name of the prefix macro as the user entered it
(without operands). Later, you will see how the macro uses name to determine if it
was invoked in its simple form (L) or block form (LL).

The source string is described in detail in z/VM: REXX/VM Reference.

In line 8, the argument string is parsed. For now, note that pline is the line number
of the prefix area, and op is the optional operand.

The rest of the argument string is described later in this chapter. See “Examining
the Argument String” on page 129.

 Chapter 7. The Macrolanguage 125

 The Macrolanguage

In this example, if the user entered L8 in the prefix area of line 3 of a file, name
would be L, pline would be 3, and op would be 8.

Using the Information That Is Passed
The following part of the macro shows how some of the information derived from
the strings is used.

����7 parse source name .

����8 arg pref func pline op extra

 .

 .

 .

���19 when length(name)=1 then do

���2� If op = '' then op = 1

���21 If datatype(op,'W') then,

���22 'COMMAND :'pline 'LOWERCAS' op

���23 else call error "Invalid operand :" op

���24 end

In lines 19 through 24, you can see that the source and argument strings supply
the answers to these questions:

What name was used to invoke the macro?
On which line was it entered?
How many lines are to be changed to lowercase?

Using the variable names assigned in the templates, lines 19 through 24 perform
the following functions:

1. See if the macro was entered in its simple form (L). When the length of name
is one, the macro was entered in its simple form.

2. If no operand was entered, assign a default of 1 or determine if the operand (if
any) is a valid whole number (lines 20 and 21). Otherwise, go to an error
routine (line 23).

3. Make the line in which the prefix macro was entered (pline) current and issue
the LOWERCAS subcommand, with the operand (line 22).

 Handling Blocks
A block is a group of consecutive lines. Several XEDIT prefix subcommands and
macros (for example, D and >) allow you to specify blocks by doubling the name
and entering it on both the first and last lines of the block (for example, DD entered
on the first and last lines of a block deletes the entire block of lines). Let’s expand
the L prefix macro to accept blocks (specified by entering LL on the first and last
lines of the block).

126 z/VM: XEDIT User's Guide

 The Macrolanguage

���18 select

���19 when length(name)=1 then do

���2� If op = '' then op = 1

���21 If datatype(op,'W') then,

���22 'COMMAND :'pline 'LOWERCAS' op

���23 else call error "Invalid operand :" op

���24 end

���25

���26 when length(name)=2 then do

���27 If op ¬= '' then call error,

���28 'Invalid operand :' op

���29 'COMMAND EXTRACT /PENDING BLOCK' name ':� :'pline '/'

���3� if pending.�¬=� then do

���31 'COMMAND :'pending.1 'SET PENDING OFF'

���32 'COMMAND :'pending.1 'LOWERCAS :'pline+1

���33 end

���34 else 'COMMAND :'pline 'COMMAND SET PENDING BLOCK' name

���35 End

Assigning a Synonym for a Prefix Macro
The user must issue the following subcommand in order to be able to specify the
block form of the L macro. You can enter this subcommand in the PROFILE
XEDIT file:

SET PREFIX SYNONYM LL L

Now, the user can invoke the L prefix macro by entering either L (with an optional
numeric operand) or LL. In line 19, the macro checks for its simple form (when the
length of name is 1). In line 26, the macro checks for its block form (when the
length of name is 2).

Synonyms can also be assigned for other reasons. For example:

� A prefix macro file name can be up to eight alphabetic characters long, but the
prefix area is only five positions long. You can use SET PREFIX SYNONYM to
assign a synonym up to five characters long.

� The synonym can be a special character not permitted as part of a CMS file
name. For example, the file name for the XEDIT prefix macro > is PRFSHIFT.

� A macro can perform different functions, depending on how it is entered.
Different synonyms can signify different functions to the macro. For example,
the XEDIT prefix macro PRFSHIFT shifts the screen right if > is entered and
left if < is entered. The synonyms assigned to this macro are:

SET PREFIX SYNONYM > PRFSHIFT
SET PREFIX SYNONYM < PRFSHIFT
SET PREFIX SYNONYM >> PRFSHIFT
SET PREFIX SYNONYM << PRFSHIFT

� Prefix macros can also use the names of prefix subcommands such as F
(following) or P (preceding). To use a prefix subcommand in a prefix macro,
you should either define a synonym (see SET PREFIX in z/VM: XEDIT
Commands and Macros Reference) or override the prefix subcommand by
using SET MACRO ON.

 Chapter 7. The Macrolanguage 127

 The Macrolanguage

To determine what prefix macro synonyms are in effect, use the QUERY PREFIX
SYNONYM subcommand, which is described in detail in z/VM: XEDIT Commands
and Macros Reference.

Using the Pending List
You have seen the source and argument strings are two sources of information
upon which a prefix macro can base decisions. Another is the pending list.

The pending list is a list of prefix subcommands and macros that have not yet been
executed. Every time the editor reads the screen, the pending list is updated
(automatically) with any new prefix subcommands and macros that have been
entered, each of which causes an entry to be added to the list. Each entry is
associated with a specific line in the file.

The pending list is executed when it is changed. If a prefix macro returns a
nonzero return code, execution of the pending list stops and all entries not
executed remain pending, until the user presses Enter (or a PF or PA key).

An entry is deleted from the pending list when it is executed or overtyped on the
user’s screen with a new prefix subcommand, prefix macro, or blanks. For
example, when the L prefix macro is invoked, it is removed from the pending list.

A prefix macro can control its execution and display or remove the pending notice
from the status area of the screen by examining information in the pending list
(EXTRACT/QUERY PENDING) and by adding or deleting entries in it (SET
PENDING). See z/VM: XEDIT Commands and Macros Reference for detailed
information on these subcommands.

The pending notice is displayed in the status area as follows:

value pending...

where value is the name of the prefix subcommand or macro entered in the prefix
area, as derived from the source string (see line 34). (If multiple prefix
subcommands or macros are pending, the first one, starting from the top of file, is
displayed in the pending notice.)

In our example, suppose the user entered the block form (LL), which is determined
by line 26. First, the macro needs to know if another LL has been entered, that is,
if the pending list contains a matching block entry.

To determine this, the macro examines the pending list by issuing the EXTRACT
subcommand shown in line 29. This subcommand searches the pending list for a
matching block entry, which must be located in the file within the range specified by
the targets, that is, between the top of file (:0) and the prefix line (:pline), inclusive.
If no matching entry is found, the screen is placed in a pending status (line 34).

If a second LL was entered, the pending status of the screen will not be seen
because the macro is automatically invoked again as the pending list is executed.
This time, the EXTRACT subcommand (line 29) finds the matching block entry, the
pending notice is removed (line 31) and the LOWERCAS subcommand is executed
for the block of lines (line 32).

128 z/VM: XEDIT User's Guide

 The Macrolanguage

Examining the Argument String
The argument string is as follows:

PREFIX SET|SHADOW|CLEAR pline [op1[op2[op3]]]

 Where:

PREFIX
indicates this is a prefix call.

SET
indicates the prefix macro was entered on some line in the file displayed.

SHADOW
indicates a prefix macro was entered on a shadow line (see SET SHADOW in
z/VM: XEDIT Commands and Macros Reference).

CLEAR
indicates a new prefix subcommand or macro or new blank area replaces a
previously pending prefix subcommand or macro on the same line, or the
RESET subcommand was entered. In this case, this macro is invoked with
“PREFIX CLEAR pline”.

pline
is the line number on which the prefix macro was entered.

op
is the optional operand(s) of the macro, entered either to its left or right (for
example, 5M or M5). See z/VM: XEDIT Commands and Macros Reference
chapter that describes “Prefix Subcommands and Macros” for rules for the
recognition of operands.

Let’s see how this macro uses the argument string for validity checking.

����8 arg pref func pline op extra

����9 If pref ¬= 'PREFIX' then call error1,

���1� 'This macro must be invoked from the PREFIX area.'

���11 If func = 'CLEAR' then exit

���12 If func = 'SHADOW' then call error1,

���13 'Invalid on shadow line.'

���14 If func ¬= 'SET' then call error1,

���15 'This macro must be invoked from the PREFIX area.'

���16 If extra ¬= '' then call error,

���17 'Extraneous parameter:' extra

 .

 .

 .

���42 /� error routines �/

���43 error: 'COMMAND :'pline 'SET PENDING ERROR' name||op

���44 error1: parse arg t

���45 'COMMAND EMSG' t

���46 Exit

Lines 9 through 17 verify the macro is a prefix call and was entered on a valid
prefix line, that is, not on a shadow line. Lines 42 through 45 are the associated
error routines.

 Chapter 7. The Macrolanguage 129

 The Macrolanguage

Line 43 is a form of the SET PENDING subcommand used to notify the user the
macro was entered incorrectly. In this case, if an extra operand was entered
(determined in line 16), the incorrect macro is displayed highlighted in the prefix
area, prefixed by a question mark. For example, if the user entered L3 4, the prefix
area displays ?L3 and the user gets the message Extraneous parameter: 4.

SET PENDING ERROR does not cause a pending notice to be displayed. When
the user presses Enter again, the prefix area is reset. This prevents subsequent
attempts to execute an incorrectly-entered macro.

Positioning the Cursor
The cursor is positioned in the line in which the prefix macro was entered by using
the following subcommand:

���39 'COMMAND CURSOR FILE' pline 'PRIORITY 3�'

By using the CURSOR subcommand, user-written prefix macros can specify a
priority associated with cursor positioning. The cursor is positioned at the location
specified that has the highest priority when all pending prefix subcommands and
any macros are executed.

For more information on the CURSOR subcommand and various priorities
associated with prefix subcommands and macros, see the CURSOR subcommand
and z/VM: XEDIT Commands and Macros Reference chapter that describes “Prefix
Subcommands and Macros.”

The rest of this chapter presents additional information which can be useful in
writing prefix macros or tells you where the information can be found.

Decoding the Prefix Area
See the z/VM: XEDIT Commands and Macros Reference, “Section 4: Prefix
Subcommands and Macros” for a description of how the editor interprets what is
entered in the prefix area.

Using the XEDIT Subcommand
A prefix macro can issue the XEDIT subcommand to edit a different file in the ring.
However, when the macro finishes executing, control automatically returns to the
file from which it was invoked.

130 z/VM: XEDIT User's Guide

 The Macrolanguage

 Additional Examples
For additional examples of prefix macros, you can examine the IBM-supplied prefix
macros, which are as follows:

Also see Figure 40 on page 132 for a sample prefix macro.

Macro synonym(s)

File Identifier

X, XX PREFIXX XEDIT
S PRFSHOW XEDIT
<, >, >>, << PRFSHIFT XEDIT
. SI XEDIT

 Chapter 7. The Macrolanguage 131

 The Macrolanguage

The L Prefix Macro

����1 /� Use this macro to translate a line or lines in a file �/

����2 /� to lowercase. �/

����3 /� You may specify nL, Ln, L-n or L to lowercase a line. �/

����4 /� If you add the following prefix synonym to your �/

����5 /� profile, you may also use LL for specifying blocks: �/

����6 /� SET PREFIX SYNONYM LL L �/

����7 parse source name .

����8 arg pref func pline op extra

����9 If pref ¬= 'PREFIX' then call error1,

���1� 'This macro must be invoked from the PREFIX area.'

���11 If func = 'CLEAR' then exit

���12 If func = 'SHADOW' then call error1,

���13 'Invalid on shadow line.'

���14 If func ¬= 'SET' then call error1,

���15 'This macro must be invoked from the PREFIX area.'

���16 If extra ¬= '' then call error,

���17 'Extraneous parameter:' extra

���18 select

���19 when length(name)=1 then do

���2� If op = '' then op = 1

���21 If datatype(op,'W') then,

���22 'COMMAND :'pline 'LOWERCAS' op

���23 else call error "Invalid operand :" op

���24 end

���25

���26 when length(name)=2 then do

���27 If op ¬= '' then call error,

���28 'Invalid operand :' op

���29 'COMMAND EXTRACT /PENDING BLOCK' name ':� :'pline '/'

���3� if pending.�¬=� then do

���31 'COMMAND :'pending.1 'SET PENDING OFF'

���32 'COMMAND :' pending.1 'LOWERCAS :'pline+1

���33 end

���34 else 'COMMAND :'pline 'COMMAND SET PENDING BLOCK' name

���35 End

���36

���37 Otherwise call error "Invalid macro synonym."

���38 End

���39 'COMMAND CURSOR FILE' pline 'PRIORITY 3�'

���4� Exit

���41

���42 /� error routines �/

���43 error: 'COMMAND :'pline 'SET PENDING ERROR' name||op

���44 error1: parse arg t

���45 'COMMAND EMSG' t

���46 Exit

Figure 40. Sample Prefix Macro

132 z/VM: XEDIT User's Guide

 XEDIT Subcommands and Macros

Appendix A. Summary of XEDIT Subcommands and Macros

These subcommands are described in detail in z/VM: XEDIT Commands and
Macros Reference.

Table 5 (Page 1 of 6). XEDIT Subcommand Summary

Subcommand Purpose

Add Adds n line(s) after current line.

ALL Selects a collection of lines for display/editing.

ALter Changes a single character to another (character or hex).

BAckward Scrolls backward n screen displays.

Bottom Goes to last line of file.

CANCEL Terminates the editing session for all files.

CAppend Adds text to end of current line.

CDelete Deletes characters, starting at column pointer.

CFirst Moves column pointer to beginning of the zone.

Change Changes one string to another.

CInsert Inserts text starting at the column pointer of the current line.

CLAst Moves the column pointer to the end of the zone specified.

CLocate Locates a string; moves the column pointer and the line pointer.

CMS Passes a command to CMS, or enters CMS subset mode.

CMSG Displays message in command line of user’s screen.

COMMAND Executes a subcommand without checking for synonym or macro.

COMPress Prepares line(s) for realignment by replacing blanks with tab
characters.

COpy Copies line(s) at specified location.

COUnt Displays the number of times a string appears.

COVerlay Replaces characters, starting at column pointer.

CP Passes command to control program.

CReplace Replaces characters, starting at the column pointer.

CURsor Moves the cursor to specified position on the screen, and
optionally assigns a priority for this position.

DELete Deletes line(s) beginning with the current line.

Down Moves line pointer n lines toward end of file (same as NEXT).

DUPlicat Duplicates line(s).

EMSG Displays a message and sounds the alarm.

EXPand Repositions data according to new tab settings.

EXTract Returns information about internal XEDIT variables and file data.

FILE Writes file to disk or directory.

Find Searches for line that starts with specified text.

 Copyright IBM Corp. 1990, 2005 133

 XEDIT Subcommands and Macros

Table 5 (Page 2 of 6). XEDIT Subcommand Summary

Subcommand Purpose

FINDUp Searches for a line that starts with specified text; searches in a
backward direction.

FOrward Scrolls forward n screen displays.

GET Inserts lines from another file.

Help Requests online display of XEDIT subcommands and macros;
invokes the z/VM HELP Facility.

HEXType Displays line(s) in hexadecimal and EBCDIC.

Input Inserts a single line, or enters input mode.

Join Combines two or more lines into one line.

LEft Views data to the left of column one.

LOAD Reads file into storage; use in profile macro only.

Locate Moves line pointer to specified target.

LOWercas Changes uppercase letters to lowercase.

LPrefix Simulates writing in the prefix area of the current line. Used on
typewriter terminals.

MACRO Executes macro without checking for subcommand or synonym.

MErge Combines two sets of lines.

MODify Displays a subcommand and its current values in the command
line, so it can be overtyped and reentered.

MOve Moves line(s) to another place in the file.

MSG Displays message in message line.

Next Moves line pointer n lines toward end of file (same as DOWN).

NFind Searches forward for first line that does not start with the
specified text.

NFINDUp Searches backward for first line that does not start with the
specified text.

Overlay Replaces characters in current line.

PARSE Scans a line of a macro to check the format of its operands.

POWerinp Enters input mode for continuous typing.

PREServe Saves settings of XEDIT variables until RESTORE is entered.

PURge Removes macro from virtual storage.

PUT Inserts lines into another file (new or existing), or into a buffer (to
be retrieved by GET from another file).

PUTD Same as PUT, but deletes original lines.

Query Displays the current value of editing options.

QUIT Ends an editing session without saving changes.

READ Places information from the terminal in the console stack.

RECover Replaces removed lines.

REFRESH Issued from a macro, it updates the display on the screen.

RENum Renumbers VSBASIC or FREEFORT files.

134 z/VM: XEDIT User's Guide

 XEDIT Subcommands and Macros

Table 5 (Page 3 of 6). XEDIT Subcommand Summary

Subcommand Purpose

REPEat Advances line pointer and reexecutes last subcommand.

Replace Replaces current line, or deletes current line and enters input
mode.

RESet Removes prefix subcommands or macros when screen is in
pending status.

RESTore Restores settings of XEDIT variables to values they had when
PRESERVE was issued.

RGTLEFT Shifts display to the right or left; reissue to shift back to original
display.

RIght Views data to the right of the last (right-most) column.

SAVE Writes file to disk or directory and remains in edit mode.

SCHANGE Locates string and makes a selective change, using PF keys.

SET ALT Changes the number of alterations that have been made to the
file since the last AUTOSAVE or since the last SAVE.

SET APL Informs the editor and CMS if APL keys are used.

SET ARBchar Defines an arbitrary character to be used in a target definition.

SET AUtosave Automatically issues a SAVE subcommand at specified intervals.

SET BFSLine Controls the translation between records and byte stream for BFS
files.

SET BRKkey Specifies whether CP should break in when the “BRKKEY”
(defined by CP TERMINAL BRKKEY) is pressed.

SET CASE Uppercase or lowercase control; specifies if case is significant in
target searches.

SET CMDline Moves the position of the command line.

SET COLOR Associates specific colors and attributes with various fields on the
XEDIT screen.

SET COLPtr Specifies if column pointer is displayed (typewriter terminals only).

SET CTLchar Defines a control character(s), which associate parts of a
reserved line with highlighting, protection, visibility, various colors,
extended highlighting, and Programmed Symbol Sets.

SET CURLine Defines the position of the current line on the screen.

SET DISPlay Indicates which selection levels of lines will be displayed on the
screen.

SET ENTer Defines a meaning for the Enter key.

SET ESCape Defines a character that lets you enter a subcommand while in
input mode (typewriter terminals only).

SET ETARBCH Defines an arbitrary character within a file containing Double-Byte
Character Set (DBCS) characters to be used in target definitions.

SET ETMODE Informs the editor that there are Double-Byte Character Set
strings in the file.

SET FILler Defines a character that is used when a line is expanded.

SET FMode Changes the file mode of the current file.

SET FName Changes the file name of the current file.

 Appendix A. Summary of XEDIT Subcommands and Macros 135

 XEDIT Subcommands and Macros

Table 5 (Page 4 of 6). XEDIT Subcommand Summary

Subcommand Purpose

SET FType Changes the file type of the current file.

SET FULLread Controls whether the 3270 null character is recognized in the
middle of the screen lines.

SET HEX Allows string operands and targets to be specified in hexadecimal.

SET IMage Controls how tabs and backspaces are handled when a line is
entered.

SET IMPcmscp Controls whether subcommands not recognized by the editor are
transmitted to CMS and CP.

SET LASTLorc Defines the contents of the last locate or change buffer.

SET LINENd Defines a line end character.

SET LRecl Defines a new logical record length.

SET MACRO Controls the order in which the editor searches for subcommands
and macros.

SET MASK Defines a new mask, which is the contents of added lines and the
input zone.

SET MSGLine Defines position of message line and the number of lines a
message may expand to.

SET MSGMode Controls the message display.

SET NAMetype File IDs are in CMS format (fn ft fm) or in BFS format (pathname).

SET NONDisp Defines a character to XEDIT and CMS that is used in place of
non-displayable characters.

SET NULls Specifies whether trailing blanks are replaced with nulls to allow
character insertion.

SET NUMber Specifies whether file line numbers are displayed in the prefix
area.

SET PAn Defines a meaning for a PA key.

SET PACK Specifies if the file is to be written to disk or SFS directory in
packed format.

SET PENDing Controls the execution of a prefix macro and the status of the
screen while the macro is being executed.

SET PFn Defines a meaning for a PF key.

SET PName Changes the BFS path name of the current file.

SET Point Defines a symbolic name for the current line.

SET PREfix Controls the display of the prefix area or defines a synonym for a
prefix subcommand.

SET RANge Controls limits for line-pointer movement.

SET RECFm Defines the record format.

SET REMote Controls the way data transmission is handled in XEDIT and
CMS.

SET RESERved Reserves a line, which cannot be used by the editor.

SET SCALe Controls the display of the scale line.

SET SCOPE Specifies whether the editor operates on the entire file or on only
those lines displayed.

136 z/VM: XEDIT User's Guide

 XEDIT Subcommands and Macros

Table 5 (Page 5 of 6). XEDIT Subcommand Summary

Subcommand Purpose

SET SCReen Divides the screen into logical screens, for multiple views of the
same or of different files.

SET SELect Assigns a selection level to a line or group of lines in a file.

SET SERial Controls file serialization.

SET SHADow Specifies whether the file is to be displayed with or without
shadow lines indicating where lines have been excluded from the
display.

SET SIDcode Specifies a character string that is to be inserted into every line of
an update file.

SET SPAN Allows a string target to span a number of lines.

SET SPILL Controls whether truncation will occur for certain subcommands.

SET STAY Specifies for certain subcommands whether the line pointer
moves when searching for a string.

SET STReam Specifies whether the editor searches only the current line or the
whole file for a column-target.

SET SYNonym Specifies whether the editor looks for synonyms; assigns a
synonym.

SET TABLine Controls the display of the tab line.

SET TABS Defines the logical tab stops.

SET TERMinal Specifies whether a terminal is used in line mode or full-screen
mode.

SET TEXT Informs the editor and CMS if TEXT keys are used.

SET TOFEOF Controls the display of TOF/EOF lines.

SET TRANSLat Controls user-defined uppercase translation.

SET TRunc Defines the truncation column.

SET VARblank Specifies whether the number of blanks between two words is
significant in a target search.

SET Verify Controls whether lines changed by subcommands are displayed;
defines the columns displayed and whether displayed in EBCDIC,
hexadecimal or both.

SET WRap Controls whether the editor wraps around the file if EOF (or TOF
for backward searches) is reached during a search.

SET Zone Defines new limits within each line for target searches.

SET = Inserts string into the equal buffer.

SHift Moves data right or left (data loss possible).

SI Continuously adds lines and positions cursor for indented text.

SORT Sorts all or part of a file, in ascending or descending order.

SOS Specifies functions for screen operation simulation.

SPlit Splits a line into two or more lines.

SPLTJOIN Splits a line or joins two lines at the cursor.

STAck Places line(s) from the file into the console stack.

 Appendix A. Summary of XEDIT Subcommands and Macros 137

 XEDIT Subcommands and Macros

Table 5 (Page 6 of 6). XEDIT Subcommand Summary

Subcommand Purpose

STATus Displays SET subcommand current settings; creates a macro that
contains these settings.

SUPerset Specifies multiple SET options on one subcommand to improve
performance.

TOP Moves line pointer to null TOP OF FILE line.

TRAnsfer Places editing variable(s) in the console stack, for use by a
macro.

Type Displays lines.

Up Moves line pointer n lines toward top of file.

UPPercas Translates all lowercase characters to uppercase.

Xedit Edits multiple files.

& Use before a subcommand to redisplay the command.

= Reexecutes the last subcommand, macro, or CP/CMS command.

? Displays the last subcommand, macro, or CP/CMS command
executed.

Table 6. Prefix Subcommand Summary

Prefix Subcommands

A Adds line(s).

C Copies line(s).

D Deletes line(s).

E Extends a line.

F Moves or copies following this line.

I Inserts line(s).

M Moves line(s).

P Moves or copies preceding this line.

SI Continuously adds lines and positions cursor for indented text.

" Duplicates line(s).

/ Makes this line the current line.

SCALE Displays the scale on this line.

TABL Displays the tab line on this line.

.xxxx Assigns symbolic name to this line.

X Excludes line(s) from display.

S Shows excluded line(s).

< Shifts line(s) to the left.

> Shifts line(s) to the right.

138 z/VM: XEDIT User's Guide

 Notices

This information was developed for products and
services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this
document in all countries. Consult your local IBM
representative for information on the products and
services currently available in your area. Any reference
to an IBM product, program, or service is not intended
to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent
product, program, or service that does not infringe any
IBM intellectual property right may be used instead.
However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program,
or service.

IBM may have patents or pending patent applications
covering subject matter described in this document.
The furnishing of this document does not grant you any
license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, New York 1�5�4-1785

U.S.A.

For license inquiries regarding double-byte (DBCS)
information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing,
to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 1�6-��32, Japan

The following paragraph does not apply to the
United Kingdom or any other country where such
provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be
incorporated in new editions of the publication. IBM
may make improvements and/or changes to the
product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites
are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites.
The materials at those Web sites are not part of the
materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information
about it for the purpose of enabling: (i) the exchange of
information between independently created programs
and other programs (including this one) and (ii) the
mutual use of the information which has been
exchanged, should contact:

IBM Corporation

Mail Station P3��

2455 South Road

Poughkeepsie, New York 126�1-54��

U.S.A.

Attention: Information Request

Such information may be available, subject to
appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and
all licensed material available for it are provided by IBM
under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined
in a controlled environment. Therefore, the results
obtained in other operating environments may vary
significantly. Some measurements may have been
made on development-level systems and there is no
guarantee that these measurements will be the same
on generally available systems. Furthermore, some
measurement may have been estimated through
extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained
from the suppliers of those products, their published
announcements or other publicly available sources.
IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the
capabilities on non-IBM products should be addressed
to the suppliers of those products.

 Copyright IBM Corp. 1990, 2005 139

All statements regarding IBM's future direction or intent
are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information may contain examples of data and
reports used in daily business operations. To illustrate
them as completely as possible, the examples include
the names of individuals, companies, brands, and
products. All of these names are fictitious and any
similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application
programs in source language, which illustrate
programming techniques on various operating platforms.
You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the
purposes of developing, using, marketing or distributing
application programs conforming to the application
programming interface for the operating platform for
which the sample programs are written. These
examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

 Trademarks

The following terms are trademarks of International
Business Machines Corporation in the United States, or
other countries or both:

 DFSMS/VM
 eServer
 IBM
 IBMLink
 Language Environment
 MVS
 OpenExtensions

Performance Toolkit for VM
 System z9
 z/OS
 z/VM
 zSeries

Linux is a trademark of Linus Torvalds in the United
States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

140 z/VM: XEDIT User's Guide

 Glossary

For a list of z/VM terms and their definitions, see the z/VM: Glossary book.

The glossary is also available through the online HELP Facility. For example, to display the
definition of “cms,” enter:

help glossary cms

You will enter the glossary HELP file and the definition of “cms” will be displayed as the
current line. While you are in the glossary HELP file, you can also search for other terms.

If you are unfamiliar with the HELP Facility, you can enter:

help

to display the main HELP menu, or enter:

help cms help

for information about the HELP command.

For more information about the HELP Facility, see the z/VM: CMS User’s Guide.

 Copyright IBM Corp. 1990, 2005 141

142 z/VM: XEDIT User's Guide

 Bibliography

This bibliography lists the books in the z/VM product
library. For abstracts of these books and information
about current editions and available media, see z/VM:
General Information.

Where to Get z/VM Books

z/VM books are available from the following sources:

� IBM Publications Center at
www.ibm.com/shop/publications/order/

� z/VM Internet Library at
www.ibm.com/eserver/zseries/zvm/library/

� IBM Online Library: z/VM Collection, SK2T-2067
� IBM Online Library: z/VM Collection on DVD,

SK5T-7054

z/VM Base Library

The following books describe the facilities included in
the z/VM base product.

 Overview

z/VM: General Information, GC24-6095

z/VM: Glossary, GC24-6097

z/VM: License Information, GC24-6102

Installation, Migration, and
Service

z/VM: Guide for Automated Installation and Service,
GC24-6099

z/VM: Migration Guide, GC24-6103

z/VM: Service Guide, GC24-6117

z/VM: VMSES/E Introduction and Reference,
GC24-6130

Planning and Administration

z/VM: CMS File Pool Planning, Administration, and
Operation, SC24-6074

z/VM: CMS Planning and Administration,
SC24-6078

z/VM: Connectivity, SC24-6080

z/VM: CP Planning and Administration, SC24-6083

z/VM: Getting Started with Linux on System z9 and
zSeries, SC24-6096

z/VM: Group Control System, SC24-6098

z/VM: I/O Configuration, SC24-6100

z/VM: Running Guest Operating Systems,
SC24-6115

z/VM: Saved Segments Planning and
Administration, SC24-6116

z/VM: TCP/IP Planning and Customization,
SC24-6125

eServer zSeries 900: Planning for the Open
Systems Adapter-2 Feature, GA22-7477

System z9 and eServer zSeries: Open Systems
Adapter-Express Customer’s Guide and Reference,
SA22-7935

System z9 and eServer zSeries: Open Systems
Adapter-Express Integrated Console Controller
User’s Guide, SA22-7990

z/OS and z/VM: Hardware Configuration Manager
User’s Guide, SC33-7989

Customization and Tuning

z/VM: CP Exit Customization, SC24-6082

z/VM: Performance, SC24-6109

 Operation

z/VM: System Operation, SC24-6121

z/VM: Virtual Machine Operation, SC24-6128

 Application Programming

z/VM: CMS Application Development Guide,
SC24-6069

z/VM: CMS Application Development Guide for
Assembler, SC24-6070

z/VM: CMS Application Multitasking, SC24-6071

z/VM: CMS Callable Services Reference,
SC24-6072

z/VM: CMS Macros and Functions Reference,
SC24-6075

z/VM: CP Programming Services, SC24-6084

z/VM: CPI Communications User’s Guide,
SC24-6085

z/VM: Enterprise Systems Architecture/Extended
Configuration Principles of Operation, SC24-6094

 Copyright IBM Corp. 1990, 2005 143

z/VM: Language Environment User’s Guide,
SC24-6101

z/VM: OpenExtensions Advanced Application
Programming Tools, SC24-6104

z/VM: OpenExtensions Callable Services
Reference, SC24-6105

z/VM: OpenExtensions Commands Reference,
SC24-6106

z/VM: OpenExtensions POSIX Conformance
Document, GC24-6107

z/VM: OpenExtensions User’s Guide, SC24-6108

z/VM: Program Management Binder for CMS,
SC24-6110

z/VM: Reusable Server Kernel Programmer’s Guide
and Reference, SC24-6112

z/VM: REXX/VM Reference, SC24-6113

z/VM: REXX/VM User’s Guide, SC24-6114

z/VM: Systems Management Application
Programming, SC24-6122

z/VM: TCP/IP Programmer’s Reference, SC24-6126

Common Programming Interface Communications
Reference, SC26-4399

Common Programming Interface Resource
Recovery Reference, SC31-6821

z/OS: Language Environment Concepts Guide,
SA22-7567

z/OS: Language Environment Debugging Guide,
GA22-7560

z/OS: Language Environment Programming Guide,
SA22-7561

z/OS: Language Environment Programming
Reference, SA22-7562

z/OS: Language Environment Run-Time Messages,
SA22-7566

z/OS: Language Environment Writing ILC
Applications, SA22-7563

z/OS MVS Program Management: Advanced
Facilities, SA22-7644

z/OS MVS Program Management: User’s Guide and
Reference, SA22-7643

 End Use

z/VM: CMS Commands and Utilities Reference,
SC24-6073

z/VM: CMS Pipelines Reference, SC24-6076

z/VM: CMS Pipelines User’s Guide, SC24-6077

z/VM: CMS Primer, SC24-6137

z/VM: CMS User’s Guide, SC24-6079

z/VM: CP Commands and Utilities Reference,
SC24-6081

z/VM: Quick Reference, SC24-6111

z/VM: TCP/IP User’s Guide, SC24-6127

z/VM: XEDIT Commands and Macros Reference,
SC24-6131

z/VM: XEDIT User’s Guide, SC24-6132

CMS/TSO Pipelines: Author’s Edition, SL26-0018

 System Diagnosis

z/VM: CMS and REXX/VM Messages and Codes,
GC24-6118

z/VM: CP Messages and Codes, GC24-6119

z/VM: Diagnosis Guide, GC24-6092

z/VM: Dump Viewing Facility, GC24-6093

z/VM: Other Components Messages and Codes,
GC24-6120

z/VM: TCP/IP Diagnosis Guide, GC24-6123

z/VM: TCP/IP Messages and Codes, GC24-6124

z/VM: VM Dump Tool, GC24-6129

z/OS and z/VM: Hardware Configuration Definition
Messages, SC33-7986

Books for z/VM Optional Features

The following books describe the optional features of
z/VM.

Data Facility Storage
Management Subsystem for VM

z/VM: DFSMS/VM Customization, SC24-6086

z/VM: DFSMS/VM Diagnosis Guide, GC24-6087

z/VM: DFSMS/VM Messages and Codes,
GC24-6088

z/VM: DFSMS/VM Planning Guide, SC24-6089

z/VM: DFSMS/VM Removable Media Services,
SC24-6090

z/VM: DFSMS/VM Storage Administration,
SC24-6091

144 z/VM: XEDIT User's Guide

Directory Maintenance Facility

z/VM: Directory Maintenance Facility Commands
Reference, SC24-6133

z/VM: Directory Maintenance Facility Messages,
GC24-6134

z/VM: Directory Maintenance Facility Tailoring and
Administration Guide, SC24-6135

Performance Toolkit for VM

z/VM: Performance Toolkit, SC24-6136

Resource Access Control Facility

External Security Interface (RACROUTE) Macro
Reference for MVS and VM, GC28-1366

Resource Access Control Facility: Auditor’s Guide,
SC28-1342

Resource Access Control Facility: Command
Language Reference, SC28-0733

Resource Access Control Facility: Diagnosis Guide,
GY28-1016

Resource Access Control Facility: General
Information, GC28-0722

Resource Access Control Facility: General User’s
Guide, SC28-1341

Resource Access Control Facility: Macros and
Interfaces, SC28-1345

Resource Access Control Facility: Messages and
Codes, SC38-1014

Resource Access Control Facility: Migration and
Planning, GC23-3054

Resource Access Control Facility: Security
Administrator’s Guide, SC28-1340

Resource Access Control Facility: System
Programmer’s Guide, SC28-1343

 Bibliography 145

146 z/VM: XEDIT User's Guide

 Index

Special Characters
? subcommand 12
/ prefix subcommand 20

practice exercise using 44
..... (pending...) 16
.xxxx (prefix subcommand) 80
" (prefix subcommand) 18
"" (pending...) 19
$ (as arbitrary character) 85
& (symbol used in string target) 83
(as default line-end character) 7, 8
< SHIFT LEFT prefix macro 39
= subcommand 12

in typewriter mode 58
> SHIFT RIGHT prefix macro 39
| *symbol used in string target) 83

A
A prefix subcommand 13

practice exercise using 46
absolute column number 28
absolute line number

example 77
specifying target as 76

add
lines

continuously 16
of indented text 16
using A (prefix subcommand) 13
using SI 16

subcommands 111
text

in typewriter mode 56
to end of line 91

alarm
sounding 114

ALL macro 39
Alt= 3
alter

a character 39
in typewriter mode 68

ALTER macro 39
alteration count 3, 33, 63
AND symbol used in string target 83
append

in typewriter mode 56
text to line 91

arbitrary character 85
argument string

passed to prefix macro 124, 129

assign
name to a line 80

automatic
line wrapping 28
save 3, 32

in typewriter mode 63

B
backspace

characters in typewriter mode 66, 68
backward

search 25, 82, 84
BACKWARD subcommand 21
BFS (byte file system) 1, 2, 51
blank

characters
targets, significance 87

line
in typewriter mode 58
insert 13

block
lines

accepted by prefix macros 126
copying 19
deleting 13
duplicating 18
moving 19

BOTTOM subcommand 21
in typewriter mode 54
practice exercise using 44

break in the data, causing 7
bypassing

profile macro 121

C
C or CC pending... 19
C prefix subcommand 19
CANCEL macro 94
CAPPEND macro 91

in typewriter mode 56
case

changing 39
specifying 85

CDELETE subcommand 91
in typewriter mode 56

CFIRST subcommand 30, 91
in typewriter mode 55

change
definition of a character 39

in typewriter mode 68

 Copyright IBM Corp. 1990, 2005 147

change (continued)
screen layout 101
tab settings 31

in typewriter mode 67
change data

from multiple views of the same file 96
globally 27

in typewriter mode 57
position 39
selectively 25

in typewriter mode 58
using CHANGE 25

in typewriter mode 57
using COVERLAY 91
using CREPLACE 91

CHANGE subcommand 25
in typewriter mode 57
practice exercise using 47
with absolute line number as target 76

character
delete using CDELETE 91
insert using CINSERT 28, 91
overlay using COVERLAY 91
replace using CREPLACE 91

CINSERT subcommand 28, 91
in typewriter mode 55

CLAST subcommand 91
CLEAR key to remove prefix subcommands 21
CLOCATE subcommand 24, 89

in typewriter mode 55
CMS

commands issued from a macro 116
CMS subcommand 116
CMSG subcommand 114
Col= 3
color

defining
with SET COLOR 102
with SET CTLCHAR 115
with SET RESERVED 115

column
specified for viewing 39

column pointer
defined 4
displayed in the scale 4
displayed on typewriter terminal 53
indicator in file identification line 3
list of subcommands operating based on 91
moving 24, 90

in typewriter mode 55
to beginning of line 30, 91
to end of line 91
using CLOCATE 24

resetting 30, 91
in typewriter mode 55

subcommands based on position 54, 91

column-target 89
combine

files 33
in typewriter mode 63

SET options 88
command

input area 4
command line

changing location 101
example 104

defining display features 102
displaying message in 114
location on screen 4

COMMAND subcommand 116
commands issued from a macro 116
complex string expression as target 85

example 89
COMPRESS subcommand 39
concatenate

files 33
in typewriter mode 63

console
stack 112

copy lines
from another file

using GET on display terminal 33
using GET on typewriter terminal 63

in the same file
in typewriter mode, using COPY 62
using C prefix subcommand 19

under original lines, using " 18
COPY subcommand

in typewriter mode 62
COUNT subcommand 76

example 77
COVERLAY subcommand 91
CP

commands issued from a macro 116
subcommand 116

create
a file 1

in typewriter mode 51
macro file 111
practice exercise 43

CREPLACE subcommand 91
current column 4

in typewriter mode 53
current line

append words to 91
in typewriter mode 56

as starting place for subcommands 3
change

using / 20
using a target 72
using CLOCATE 24
using DOWN 22
using UP 22

148 z/VM: XEDIT User's Guide

current line (continued)
changing location on screen 102

example 105
defining display features 102
displaying in typewriter mode 53
indicator in file identification line 2
location on screen 3
replacing, in typewriter mode 60
using target as displacement from 77

cursor
placement in multiple screens 99

CURSOR subcommand 116
cursor, move

by priority in prefix macros 130
to command line 4
to specified location 116

D
D or DD pending... 14
D prefix subcommand 13

practice exercise using 46
data, changing

globally 27
in typewriter mode 57

selectively 25
in typewriter mode 58

using CHANGE 25
in typewriter mode 57

using COVERLAY 91
using CREPLACE 91

data, entering
on display terminal 4
on typewriter terminal 52

data, locating
using a target 81
using CLOCATE 24

in typewriter mode 55
define

screen size 96
delete

characters 91
in typewriter mode 56
lines

block of lines 13
in typewriter mode 59, 60
recovering 15
using D prefix subcommand 13

DELETE subcommand
in typewriter mode 59

delimiters
in typewriter mode 55
use of 24

destination line
F prefix subcommand 19
for copied lines 19

destination line (continued)
for moved lines 19
P prefix subcommand 19

disconnect mode
restrictions 68

display
data from a macro 114
features 102
help menus 38
in typewriter mode 67
line numbers on screen 35
lines on typewriter terminal 52
messages on editor screen 114
more than one file 96
screen layout 2
tab settings 31

divide
screen 95

DOWN subcommand 22
example 23
in typewriter mode 54
practice exercise using 44

duplicate
lines 18

E
edit

defined 1
environment 1
illustration 95
in typewriter mode 51, 52
mode 4
multiple files 93
one file 1

edit options
See edit variables

edit variables
preserving 116
restoring 116
transferring 114

editor
invoke 1

in typewriter mode 51
EMSG subcommand 114
end an editing session 32, 94

in typewriter mode 62
enter

data 4
in typewriter mode 52
prefix subcommands 3, 13
subcommands 4
using INPUT 4
using POWERINP 7
XEDIT subcommands 4

on typewriter terminal 51

 Index 149

error message
display 3

in typewriter mode 51
EXEC 2

file used as XEDIT macro 111
execute

subcommand 4, 12
exercises, practice 43
exit the editor 32, 94

in typewriter mode 62
EXPAND subcommand 39
extended highlighting

define
with SET COLOR 102
with SET CTLCHAR 115
with SET RESERVED 115

EXTRACT subcommand 112, 114

F
F pending... 19
F prefix subcommand 19
file

area on screen 3
identification line 2
in typewriter mode 63
insert 33

file mode 2
XEDIT macro 112

file name 2
XEDIT macro 111
XEDIT prefix macro 111

FILE subcommand 32
in typewriter mode 62
practice exercise using 43

file type 2
XEDIT macro 112

find, data
in typewriter mode 55
using a target 81
using CLOCATE 24

forward
search 82

FORWARD subcommand 21
full-screen mode 1

G
GET subcommand 33, 36

in typewriter mode 63
practice exercise using 48

global changes 27
in typewriter mode 57

glossary information 141

H
HELP display 38
HELP macro 38
highlighting

define
with SET COLOR 102
with SET CTLCHAR 115
with SET RESERVED 115

horizontal screen
multiple 95

I
imbed all or part of one file in another

using GET 33
in typewriter mode 63

information message display 3
in typewriter mode 51

initial setting 9
of PF keys 9

INPUT line 58
input mode 5

on typewriter terminal 52
INPUT subcommand

practice exercise using 43
to enter input mode 5

on typewriter terminal 52
to enter line in typewriter mode 58

input zone 5
changing size 102

insert
a blank line 13
from another file 33

in typewriter mode 63
in input mode 12
in power typing mode 7, 13
in typewriter mode 58, 64
lines using INPUT 6

in typewriter mode 52
mode key in XEDIT 7, 12
part of 35

example 37
using CINSERT 28, 91

in typewriter mode 55
using PA2 key 12
using SET NULLS 13
using the insert mode key 12
whole file 33

example 34
word

in typewriter mode 55
using CINSERT 28, 91

insert mode key in XEDIT
practice exercise using 44

150 z/VM: XEDIT User's Guide

invoke
editor 1

in typewriter mode 51

J
join

files 33
in typewriter mode 63
lines 10

L
label a line 80
LEFT subcommand 39
line name, target as 79

example 81
line number

displaying 35
line pointer 3

in typewriter mode 53
moved by target 72

line wrapping, automatic 28
line-end character 7
Line= 2
LOAD subcommand 122
locate

data
in typewriter mode 55
using a target 81
using CLOCATE 24

LOCATE subcommand 73
logical record length 52, 53
logical screen

multiple 95
LOWERCAS subcommand 39
LPREFIX subcommand

in typewriter mode 62

M
M or MM pending... 19
M prefix subcommand 19

practice exercise using 46
MACRO subcommand 116
macrolanguage 111
macros in XEDIT

argument string 129
avoiding name conflicts 116
creating 111, 124
cursor position 130
definition of 111
examples 115, 119

L Prefix macro 132
prefix macro 124
profile macro 123

macros in XEDIT (continued)
executing 111
file identifier 111
handling blocks 126
information passed

to prefix macro 124
using information 126
with READ 113

prefix 124
profile 121
sample 119
search order specified 117
source string 125
subcommands used in 112
XEDIT prefix macro 130

MERGE subcommand 39
message examples, notation used in x
message line

changing location 101
defining display features 102
location on screen 3

messages
controlling display of 115
displaying in command line 114
displaying on editor screen 114
error 3
in typewriter mode 51
information 3
issued from a macro 114
warning, example 32

modify
tab settings 31

MODIFY TABS 31
move

cursor
to specified location 116

cursor to command line 4
display right or left 39
line

in typewriter mode 61
using M prefix subcommand 19

line pointer
using BOTTOM 21
using DOWN 22
using TOP 21
using UP 22

lines 61
MOVE subcommand

in typewriter mode 61
move through a file

using BACKWARD 21
using BOTTOM 21

in typewriter mode 54
using DOWN 22

in typewriter mode 54
using FORWARD 21

 Index 151

move through a file (continued)
using PF keys 12
using TOP 21

in typewriter mode 54
using UP 22

in typewriter mode 54
MSG subcommand 114
multiple files

displaying 93
editing 94

illustration 95
ending editing sessions for 94
on one screen 97

example 100
multiple logical screens

defining 95
example 98

multiple views
of different files 97

example 100
of same file 96

example 98
making changes in 96

order of processing in 98

N
name

avoiding conflicts of macro 116
line 39, 80

NOT symbol used in string target 83
notation used in message and response examples x
NULLKEY 12
number of files being edited 4

O
operand

target as 74
OR symbol used in string target 83
order of processing with multiple screens 98

P
¬ (symbol)

used in target string 83
P pending... 19
P prefix subcommand 19

practice exercise using 46
PA2 key 12

practice exercise using 44
path name, BFS 1, 2, 51
pending list 99, 128
pending notice

..... pending 16
"" pending 19

pending notice (continued)
C or CC pending... 19
canceling 21
DD pending 14
defining display features 102
F pending... 19
location on screen 4
M or MM pending... 19
P pending... 19

PF keys
changing settings of 10
displaying settings of 9
initial settings of 9, 41
using 9

pound sign 7
power typing mode

example 8
inserting characters in 7
practice exercise using 44
typing data in 4, 7
using line-end character in 7

POWERINP subcommand 7
practice exercise using 44

practice exercise 43
prefix area

changing location or display 101
example 103

defining display features 102
location on screen 3
simulate in typewriter mode 62

prefix macros
assigning a synonym 127
examples 124
writing 124

prefix subcommands
/ 20
.xxxx 80
A 13

example 14
C 19
canceling 21
D 13

example 14
defined 13
F 19

example 20
list of 40
M 19

example 20
P 19
practice exercise using 46
SI 16

example 16
where to enter 3

preserve editing variables 116

152 z/VM: XEDIT User's Guide

PRESERVE subcommand 116
processing with multiple screens, order of 98
profile macro in XEDIT

definition of 121
example 123

programmed symbol set
define

with SET COLOR 102
with SET CTLCHAR 115
with SET RESERVED 115

PUT subcommand 35
in typewriter mode 64
practice exercise using 48

Q
QQUIT subcommand 32

in typewriter mode 62
QUERY LRECL subcommand 53
QUERY PF subcommand 9
QUERY POINT subcommand 80
QUERY RING 94
QUERY TABS subcommand 31

in typewriter mode 67
practice exercise using 43

QUIT subcommand 32
in typewriter mode 62

R
range of operation of subcommands, defining 74
READ subcommand 112, 113
record format 2
record length 2

in typewriter mode 52, 53
recover

deleted lines 15
in typewriter mode 60

RECOVER subcommand 15
example 15
in typewriter mode 60
practice exercise using 46

redefine a character 39
in typewriter mode 68

redisplay
subcommand 12

reexecuting a subcommand 12
refer to a line 80
relative displacement, target as 77

example 79
repeat

the display of a subcommand 12
the execution of a subcommand 12

REPLACE subcommand
in typewriter mode 60

replace, data
globally 27

in typewriter mode 57
selectively 25

in typewriter mode 58
using CHANGE 25

in typewriter mode 57
using COVERLAY 91
using CREPLACE 91

reposition data 39
RESET key 12

to end insert mode 7
RESET subcommand 21
response examples, notation used in x
restore

editing variables 116
RESTORE subcommand 116
restriction

disconnect mode 68
REXX 111

file used as XEDIT macro 111
RIGHT subcommand 39
ring of files 93

editing 94
illustration of 94

S
save

automatic 32
editing variables 116
in typewriter mode 63

scale
changing location or display 102
defining display features 102
example 106
location on screen 3

screen
changing 101
layout 2
size, defining 96

scroll
using BACKWARD 21
using FORWARD 21
using PF keys 12

search
order 117

macros and subcommands specified 117
search direction specified 82
search, data

using a target 81
using CLOCATE 24

in typewriter mode 55
selective change 25

example 27
in typewriter mode 58

 Index 153

SET ARBCHAR subcommand 39, 85
SET AUTOSAVE subcommand 32

in typewriter mode 63
practice exercise using 43

SET CASE subcommand 39, 87
SET CMDLINE subcommand 101

example 104
SET COLOR subcommand 102
SET CTLCHAR subcommand 115
SET CURLINE subcommand 102

example 105
SET HEX subcommand 85
SET IMAGE subcommand

in typewriter mode 66, 68
SET MACRO subcommand 116
SET MSGLINE subcommand 101

example 108
SET MSGMODE subcommand 115
SET NULLS subcommand 13
SET NUMBER subcommand

description 102
to determine absolute line number 35, 76

SET options, combining 88
SET PFn subcommand 9
SET POINT subcommand 39, 79
SET PREFIX subcommand 101

example 103
SET RESERVED subcommand 115
SET SCALE subcommand 102

example 106
SET SCREEN subcommand 39, 96

example 98, 100
SET SPAN subcommand 85, 87
SET SYNONYM subcommand 116
SET TABLINE subcommand 102

example 107
SET TABS subcommand 31

in typewriter mode 67
practice exercise using 43

SET VARBLANK subcommand 85, 87
SET VERIFY subcommand 39
shift

display right or left 39
SI prefix subcommand 16
simple string expression as target

example 86
format 84

size
logical screen 95
of file 2

Size= 2
sort 39
SORT macro 39
source string

passed to prefix macro 125

span
lines 87

special characters in typewriter mode
altering 68
using 66

split
lines 10
screen 95

status
..... pending 16
"" pending 19
C or CC pending... 19
DD pending 14
F pending... 19
M or MM pending... 19
of editing session 4
P pending... 19

status area
defining display features 102
during macro processing 113
location on screen 4

stop editing 32
store lines in temporary file for imbed later 35

in typewriter mode 64
string expression

complex
target as 85

simple
target as 81

string target 81
string, locating

using a target 81
using CLOCATE 24

in typewriter mode 55
structured input 16
subcommands in XEDIT

defining range of operation 74
entering on display terminal 4
entering on typewriter terminal 51
used in macros, list of 112
with target operands 71
writing your own 111

summary
of initial PF key settings 41
of prefix subcommands 138
of subset for full-screen 40
of subset for typewriter terminals 69
of XEDIT subcommands and macros 133

SUPERSET subcommand 116
symbolic name

assigned 39
synonym

assigning 127
not checking for 116

syntax diagrams, how to read viii

154 z/VM: XEDIT User's Guide

T
tab

changing settings 31
displaying 31

in typewriter mode 67
example 31
in typewriter mode 67
modifying settings 31
setting 31

in typewriter mode 67
tab characters

typewriter mode 67
tab key

in typewriter mode 67
using PF key as 31

example 31
tab line

defining display features 102
displaying 102
example 107

table
tailor the screen 101
target

as absolute line number 76
example 77

as complex string expression 85
example 89

as line name 79
example 81

as operand of LOCATE 73
as relative displacement 77

example 79
as simple string expression 81

example 86
format 84

as subcommand operand 74
example 75

definition 71
entered alone 72
entered before subcommand 74
how to express 71
types 76
used in PUT 64
used in subcommands 71
used to change current line 72
used to move line pointer 72

example 73
used with SET ARBCHAR 85
used with SET CASE 87
used with SET SPAN 87
used with SET VARBLANK 87

temporary file for later imbed 35
in typewriter mode 64

TOP subcommand 21
in typewriter mode 54

TOP subcommand (continued)
practice exercise using 44

translating characters 39
Trunc= 2
truncation column 2
TYPE subcommand 53
typewriter

mode 51
typing lines to terminal 53

U
UP subcommand 22

in typewriter mode 54
practice exercise using 44

UPPERCAS subcommand 39
example 75

V
variables in XEDIT

See edit variables
vertical screen

example 100
multiple 95

W
write

macros 111
your own subcommands 111

write a file on disk 32
in typewriter mode 62

X
XEDIT command 1

in typewriter mode 51
practice exercise using 43
used to bypass profile macro 121
used to specify profile macroname 122

XEDIT macro
See macros in XEDIT

XEDIT subcommand 4, 93
issued from a logical screen 96
issued from a prefix macro 130

XEDIT variables
See edit variables

 Index 155

Communicating Your Comments to IBM

z/VM
XEDIT User's Guide
version 5 release 2

Publication No. SC24-6132-01

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– United States and Canada: 1-845-432-9405
– Other Countries: +1 845 432 9405

� If you prefer to send comments electronically, use this network ID:

mhvrcfs@us.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

z/VM
XEDIT User's Guide
version 5 release 2

Publication No. SC24-6132-01

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? � Yes � No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction � � � � �

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC24-6132-01 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, New York 12601-5400

Fold and Tape Please do not staple Fold and Tape

SC24-6132-01

IBM

Program Number: 5741-A05

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC24-6132-�1

S
pine inform

ation:

IB
M

z/V
M

X
E

D
IT

 U
ser's G

uide
version 5 release 2

	Contents
	About This Book
	Who Should Read This Book
	What You Should Know before Reading This Book
	How To Use This Book
	How to Read Syntax Diagrams
	Message and Response Notation

	Where to Find More Information
	How to Send Your Comments to IBM

	Summary of Changes
	SC24-6132-01, z/VM Version 5 Release 2
	SC24-6132-00, z/VM Version 5 Release 1

	Chapter 1. An XEDIT Subset: Full-Screen Text Processing
	Editing a File
	XEDIT Command
	Screen Layout

	XEDIT and Full-Screen CMS
	Entering Data
	INPUT Subcommand
	POWERINP Subcommand
	Causing a Break in the Data
	Inserting Characters
	Example of Power Typing

	Using Program Function (PF) Keys
	Splitting and Joining Lines
	Splitting a Line (PF11)
	Joining Two Lines (PF11)

	Scrolling Backward and Forward
	Redisplaying a Subcommand
	Reexecuting a Subcommand
	Inserting Words Using the Insert Mode Key and a NULL Key (PA2)
	Using the SET NULLS Subcommand

	Using Prefix Subcommands
	Adding Lines Using the A Prefix Subcommand
	Deleting Lines Using the D Prefix Subcommand
	Recovering Deleted Lines

	Adding Indented Lines Using the SI Prefix Subcommand
	Duplicating Lines Using the " Prefix Subcommand
	Moving Lines Using the M, MM, F, and P Prefix Subcommands
	Copying Lines Using the C, CC, F, and P Prefix Subcommands
	Setting the Current Line (/)
	Canceling Prefix Subcommands

	Moving through a File
	BACKWARD and FORWARD Subcommands
	TOP and BOTTOM Subcommands
	DOWN and UP Subcommands

	Making Changes in a File
	CLOCATE Subcommand
	CHANGE Subcommand
	Making a Selective Change
	Making a Global Change
	CINSERT Subcommand
	CFIRST Subcommand

	Setting Tabs
	Ending an Editing Session
	FILE Subcommand
	QUIT Subcommand
	SET AUTOSAVE Subcommand

	Inserting Data from Another File
	Inserting a Whole File
	Inserting Part of Another File

	Getting Help
	Learning More about the Editor
	Summary of XEDIT Subset

	Chapter 2. Practice Exercises
	Exercise 1. Creating a File
	Exercise 2. Using Power Typing
	Exercise 3. Using Prefix Subcommands
	Exercise 4. Making Changes
	Exercise 5. Getting It All Together

	Chapter 3. Using the Editor on a Typewriter Terminal
	Editing a File
	XEDIT Command

	Entering Data
	INPUT Subcommand
	Column Pointer
	QUERY LRECL

	Moving through a File
	Line Pointer
	TYPE Subcommand
	UP and DOWN Subcommands
	TOP and BOTTOM Subcommands

	Making Changes in a File
	CLOCATE Subcommand
	CFIRST Subcommand
	CINSERT Subcommand
	CDELETE Subcommand
	CAPPEND Subcommand
	CHANGE Subcommand
	Making a Global Change
	Making a Selective Change
	= Subcommand

	Inserting and Deleting Lines
	Inserting a Line
	Deleting Lines
	Recovering Deleted Lines
	Replacing a Line

	Moving and Copying Lines
	MOVE Subcommand
	COPY Subcommand
	LPREFIX Subcommand

	Ending an Editing Session
	FILE Subcommand
	QUIT Subcommand
	SET AUTOSAVE Subcommand

	Inserting Data from Another File
	Inserting a Whole File
	Inserting Part of Another File

	Using Special Characters
	SET IMAGE Subcommand
	Tab Characters
	Setting Tabs
	Backspace Characters

	Disconnect Mode Restrictions
	Summary of XEDIT Subset

	Chapter 4. Using Targets
	What Is a Target?
	Using a Target to Change Which Line Is Current
	A Target as the Operand of a LOCATE Subcommand
	A Target Preceding a Subcommand

	Using a Target as a Subcommand Operand
	Types of Targets
	A Target as an Absolute Line Number
	A Target as a Relative Displacement from the Current Line
	A Target as a Line Name
	A Target as a Simple String Expression
	Specifying a Search Direction
	Using a NOT Symbol (P)
	Using an OR Symbol (|)
	Using an AND Symbol (&)
	A Summary of Simple String Targets

	A Target as a Complex String Expression
	Using a Target with SET ARBCHAR
	Using a Target with SET CASE
	Using a Target with SET SPAN
	Using a Target with SET VARBLANK
	Combining the SET Options

	Using Column-Targets

	Chapter 5. Editing Multiple Files
	The XEDIT Subcommand
	Creating a Ring of Files in Storage
	Editing the Files in the Ring
	Ending an Editing Session
	Multiple Logical Screens
	SET SCREEN Subcommand
	Multiple Views of the Same File
	Making Changes from Multiple Views of the Same File
	Multiple Views of Different Files
	Order of Processing
	Cursor Considerations

	Chapter 6. Tailoring the Screen
	Tailoring using SET subcommand options
	Prefix Area
	Command Line
	Message Line
	Current Line
	Scale
	Tab Line
	Color
	Number

	Chapter 7. The Macrolanguage
	What Is an XEDIT Macro?
	Creating a Macro File
	Using XEDIT Subcommands in a Macro
	Communicating between the Editor and the Interpreter
	READ Subcommand
	The EXTRACT Subcommand
	MSG, EMSG, and CMSG Subcommands
	SET MSGMODE Subcommand
	SET RESERVED Subcommand
	SET CTLCHAR Subcommand
	SUPERSET Subcommand
	CURSOR Subcommand

	Saving and Restoring Editing Variables
	Entering CMS and CP Commands
	Avoiding Name Conflicts

	Walking through an XEDIT Macro
	A Profile Macro for Editing
	Executing a Profile Macro
	Writing a Profile Macro
	An Example of a Profile Macro

	Writing Prefix Macros
	Creating a Sample Prefix Macro
	What Information Is Passed to the Macro?
	Current Line Positioning

	Creating a Second Prefix Macro
	Examining the Source String
	Using the Information That Is Passed
	Handling Blocks
	Assigning a Synonym for a Prefix Macro
	Using the Pending List

	Examining the Argument String
	Positioning the Cursor
	Decoding the Prefix Area
	Using the XEDIT Subcommand
	Additional Examples
	The L Prefix Macro

	Appendix A. Summary of XEDIT Subcommands and Macros
	Notices
	Trademarks

	Glossary
	Bibliography
	Where to Get z/VM Books
	z/VM Base Library
	Overview
	Installation, Migration, and Service
	Planning and Administration
	Customization and Tuning
	Operation
	Application Programming
	End Use
	System Diagnosis

	Books for z/VM Optional Features
	Data Facility Storage Management Subsystem for VM
	Directory Maintenance Facility
	Performance Toolkit for VM™
	Resource Access Control Facility

	Index

